test_reshape_op.py 18.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15 16 17
import unittest
import numpy as np

18
from op_test import OpTest, convert_float_to_uint16
19
import paddle
20
import paddle.fluid as fluid
J
joejiong 已提交
21
from paddle.static import Program, program_guard
Y
Yibing Liu 已提交
22

C
caoying03 已提交
23

24
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
25 26
class TestReshapeOp(OpTest):
    def setUp(self):
27 28 29 30 31 32
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
33
            'XShape': np.random.random(self.ori_shape).astype("float32"),
34
        }
Y
ying 已提交
35

36
    def init_data(self):
Z
zhupengyang 已提交
37 38 39
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
40 41

    def test_check_output(self):
42
        self.check_output(no_check_set=['XShape'])
43 44 45

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
46 47


48 49 50
class TestReshapeOp_ZeroDim1(OpTest):
    def init_data(self):
        self.ori_shape = ()
51 52
        self.new_shape = 1
        self.infered_shape = 1
53 54 55 56


class TestReshapeOp_ZeroDim2(OpTest):
    def init_data(self):
57
        self.ori_shape = ()
58 59
        self.new_shape = -1
        self.infered_shape = 1
60 61 62 63


class TestReshapeOp_ZeroDim3(OpTest):
    def init_data(self):
64
        self.ori_shape = 1
65 66
        self.new_shape = ()
        self.infered_shape = ()
67 68


69 70 71 72 73 74 75 76 77 78
class TestReshapeBF16Op(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
79 80 81 82
            "Out": convert_float_to_uint16(out),
            'XShape': convert_float_to_uint16(
                np.random.random(self.ori_shape).astype("float32")
            ),
83 84 85 86 87 88 89 90 91 92 93 94
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
95 96


97 98
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
99
        self.ori_shape = (5, 25)
100 101
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
102 103


104 105
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
106 107 108
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
109

C
caoying03 已提交
110

111
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
112 113
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
114
        self.init_data()
115
        self.op_type = "reshape2"
116

117
        self.inputs = {
118
            "X": np.random.random(self.ori_shape).astype("float32"),
119
            "Shape": np.array(self.actual_shape, dtype="int32"),
120
        }
121
        self.attrs = {"shape": self.new_shape}
122
        self.outputs = {
123
            "Out": self.inputs["X"].reshape(self.actual_shape),
124
            'XShape': np.random.random(self.ori_shape).astype("float32"),
125
        }
126

127
    def init_data(self):
Z
zhupengyang 已提交
128 129 130
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
131

132
    def test_check_output(self):
133
        self.check_output(no_check_set=['XShape'])
134

G
guosheng 已提交
135
    def test_check_grad(self):
C
chengduo 已提交
136
        self.check_grad(["X"], "Out")
137 138


139 140
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
141 142 143 144 145 146
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
147 148 149
            shape_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
150 151 152

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
153
            'ShapeTensor': shape_tensor,
154
        }
155 156 157
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
158
            'XShape': np.random.random(self.ori_shape).astype("float32"),
159 160 161
        }

    def init_data(self):
Z
zhupengyang 已提交
162 163 164
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
165 166 167 168 169 170 171 172 173 174 175
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
176 177 178
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
179 180 181 182 183
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
184 185 186 187
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
188 189 190 191 192 193 194 195 196 197


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
198
            "Shape": np.array(self.new_shape, dtype="int32"),
199
        }
200 201 202
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
203
            'XShape': np.random.random(self.ori_shape).astype("float32"),
204 205 206
        }

    def init_data(self):
Z
zhupengyang 已提交
207 208 209
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
210 211 212 213 214 215 216 217

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


218
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
219
    def init_data(self):
Z
zhupengyang 已提交
220 221 222
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
223
        self.shape = (5, -1, -1)
224 225


226
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
227
    def init_data(self):
Z
zhupengyang 已提交
228 229 230 231
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
232 233


234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
250
            'XShape': np.random.random(self.ori_shape).astype(np.float32),
251 252 253 254 255 256
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
257 258 259
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
260 261

    def test_check_output(self):
262 263 264
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape']
        )
265 266 267 268 269 270 271 272 273 274 275

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


276 277 278 279 280
class TestReshapeOpBool(TestReshapeOp):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
281
            "X": np.random.choice([True, False], size=self.ori_shape)
282 283 284 285
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
286
            'XShape': np.random.random(self.ori_shape).astype("float32"),
287 288 289 290 291 292
        }

    def test_check_grad(self):
        pass


293
# Test python API
294
class TestReshapeAPI(unittest.TestCase):
295
    def _set_paddle_api(self):
296
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
297
        self.data = paddle.static.data
298
        self.to_tensor = paddle.to_tensor
299 300 301 302
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
303 304

    def _test_api(self):
J
joejiong 已提交
305
        paddle.enable_static()
306 307
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
308 309 310 311
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
312

313
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
314

315
            # situation 1: have shape( list, no tensor)
316
            out_1 = self.reshape(x, shape)
317

318 319
            # situation 2: have shape(list, no tensor)
            out_2 = paddle.reshape(x, actual_shape)
320

321
            # Situation 3: have shape(list, have tensor)
322
            out_3 = self.reshape(x, shape=[positive_five, 10])
323

324
            # Situation 4: have shape(Tensor)
325
            out_4 = self.reshape(x, shape=actual_shape)
326

J
joejiong 已提交
327
        exe = paddle.static.Executor(place=paddle.CPUPlace())
328
        res_1, res_2, res_3, res_4 = exe.run(
329
            main_prog,
330 331 332
            feed={"x": input, "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4],
        )
333 334 335 336 337

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class TestStaticReshape_(TestReshapeAPI):
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


387
# Test Input Error
388
class TestReshapeOpError(unittest.TestCase):
389
    def _set_paddle_api(self):
J
joejiong 已提交
390
        self.data = paddle.static.data
391 392 393
        self.reshape = paddle.reshape

    def _test_errors(self):
394 395 396
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
397 398 399
                x1 = fluid.create_lod_tensor(
                    np.array([[-1]]), [[1]], paddle.CPUPlace()
                )
400
                self.reshape(x1, shape=[1])
401 402 403

            self.assertRaises(TypeError, test_x_type)

404
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
405
            def test_x_dtype():
406
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
407
                self.reshape(x2, shape=[2, 5, 5])
408 409 410

            self.assertRaises(TypeError, test_x_dtype)

411
            def test_x_dtype_float16():
412 413 414
                x_float16 = self.data(
                    name="x_float16", shape=[2, 25], dtype="float16"
                )
415
                self.reshape(x_float16, shape=[2, 5, 5])
416 417 418

            test_x_dtype_float16()

419
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
420 421 422

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
423
                self.reshape(x3, shape=1)
424 425 426 427 428

            self.assertRaises(TypeError, test_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
429
                self.reshape(x3, shape=[-1, -1, 5])
430 431 432 433 434

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
435
                self.reshape(x3, [2, 5, 5, 0])
436 437 438

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
439
            # The argument shape have more than one negative value.
440
            def test_shape_3():
441
                self.reshape(x3, [-1, -2, 5])
442 443 444

            self.assertRaises(AssertionError, test_shape_3)

445 446 447 448
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

449

450 451 452 453 454 455 456
class TestDygraphReshapeAPI(unittest.TestCase):
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
457 458 459 460
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
461
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
462 463
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
464
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
465 466 467 468 469

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
470
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
471 472
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
473
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
474 475 476 477 478

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
479
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
480 481
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
482
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
483 484


485 486 487 488 489
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
    def executed_api(self):
        self.reshape = paddle.reshape_


490 491 492
class TestReshapeZeroTensor(unittest.TestCase):
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
493
        # since we use "0" as the dimension copy semantically in reshape,
494 495 496 497 498 499 500 501 502 503
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


504 505 506 507 508 509 510 511 512 513
class TestReshapeAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.reshape(x, [1])
        out.backward()
        self.assertEqual(x.grad.shape, [])
514
        self.assertEqual(out.shape, [1])
515 516 517 518 519
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1, 1])
        out.backward()
        self.assertEqual(x.grad.shape, [])
520
        self.assertEqual(out.shape, [1, 1])
521 522
        self.assertEqual(out.grad.shape, [1, 1])

523 524 525 526 527 528 529 530
        x = paddle.rand([1])
        x.stop_gradient = False
        out = paddle.reshape(x, [])
        out.backward()
        self.assertEqual(x.grad.shape, [1])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        paddle.enable_static()

    def test_static(self):
        main_prog = fluid.Program()
        with fluid.program_guard(main_prog, fluid.Program()):
            x = paddle.rand([])
            x.stop_gradient = False
            out = paddle.reshape(x, [-1])
            fluid.backward.append_backward(out)

            prog = paddle.static.default_main_program()
            block = prog.global_block()

            x_grad = block.var(fluid.framework.grad_var_name(x.name))
            out_grad = block.var(fluid.framework.grad_var_name(out.name))

            # Test compile shape
            self.assertEqual(x.shape, ())
549
            self.assertEqual(out.shape, (1,))
550
            self.assertEqual(x_grad.shape, ())
551
            self.assertEqual(out_grad.shape, (1,))
552 553 554 555 556 557

            exe = fluid.Executor()
            result = exe.run(main_prog, fetch_list=[x, out, x_grad, out_grad])

            # Test runtime shape
            self.assertEqual(result[0].shape, ())
558
            self.assertEqual(result[1].shape, (1,))
559
            self.assertEqual(result[2].shape, ())
560
            self.assertEqual(result[3].shape, (1,))
561 562


Y
ying 已提交
563
if __name__ == "__main__":
H
hong 已提交
564
    paddle.enable_static()
Y
Yibing Liu 已提交
565
    unittest.main()