alltoall_op.cu.cc 3.5 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/alltoall_op.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
L
lilong12 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
#endif

namespace paddle {
namespace operators {

template <typename T>
class AllToAllOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
#if NCCL_VERSION_CODE >= 2703
    auto x = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    int send_numel = x->numel();
34 35
    ncclDataType_t dtype =
        platform::ToNCCLDataType(framework::TransToProtoVarType(x->dtype()));
L
lilong12 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    int ring_id = ctx.Attr<int>("ring_id");
    PADDLE_ENFORCE_GE(
        ring_id, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for alltoall op must be non-negative.", ring_id));
    auto place = ctx.GetPlace();
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    int nranks = comm->nranks();

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

    framework::DDim x_dims = x->dims();
    framework::DDim out_dims(x_dims);
    PADDLE_ENFORCE_EQ(
        x_dims[0] % nranks, 0,
        platform::errors::InvalidArgument(
            "The first dimension size (%d) of the input tensor must be "
            "divisible by the number of ranks (%d).",
            x_dims[0], nranks));
    auto send_buf = x->data<T>();
    auto recv_buf = out->mutable_data<T>(out_dims, place);
    size_t offset = 0;
    send_numel /= nranks;
66
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
L
lilong12 已提交
67
    for (auto i = 0; i < nranks; ++i) {
68
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
L
lilong12 已提交
69
          send_buf + offset, send_numel, dtype, i, comm->comm(), stream));
70
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
L
lilong12 已提交
71 72 73
          recv_buf + offset, send_numel, dtype, i, comm->comm(), stream));
      offset += send_numel;
    }
74
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
L
lilong12 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#else
    PADDLE_THROW(
        platform::errors::Unavailable("NCCL version >= 2.7.3 is needed."));
#endif
#else
    PADDLE_THROW(
        platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(alltoall, ops::AllToAllOpCUDAKernel<float>,
                        ops::AllToAllOpCUDAKernel<double>,
                        ops::AllToAllOpCUDAKernel<int>,
                        ops::AllToAllOpCUDAKernel<int64_t>,
                        ops::AllToAllOpCUDAKernel<plat::float16>);