metrics.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import abc
import numpy as np
import paddle.fluid as fluid

import logging

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

__all__ = ['Metric', 'Accuracy']


@six.add_metaclass(abc.ABCMeta)
class Metric(object):
    """
    Base class for metric, encapsulates metric logic and APIs
    Usage:
        
        m = SomeMetric()
        for prediction, label in ...:
            m.update(prediction, label)
        m.accumulate()
        
    Advanced usage for :code:`add_metric_op`
L
LielinJiang 已提交
45
    Metric calculation can be accelerated by calculating metric states
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    from model outputs and labels by Paddle OPs in :code:`add_metric_op`,
    metric states will be fetch as numpy array and call :code:`update`
    with states in numpy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
             {Metric.add_metric_op}           ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
    Examples:
        
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`add_metric_op`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculated the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].
        .. code-block:: python
            def add_metric_op(pred, label):
                # sort prediction and slice the top-5 scores
                pred = fluid.layers.argsort(pred, descending=True)[1][:, :5]
                # calculate whether the predictions are correct
                correct = pred == label
                return fluid.layers.cast(correct, dtype='float32')
        With the :code:`add_metric_op`, we split some calculations to OPs(which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:
        .. code-block:: python
            def update(self, correct):
                accs = []
                for i, k in enumerate(self.topk):
                    num_corrects = correct[:, :k].sum()
                    num_samples = len(correct)
                    accs.append(float(num_corrects) / num_samples)
                    self.total[i] += num_corrects
                    self.count[i] += num_samples
                return accs
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
        raise NotImplementedError("function 'reset' not implemented in {}.".
                                  format(self.__class__.__name__))

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.add_metric_op`,
        if :code:`add_metric_op` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.add_metric_op`
        """
        raise NotImplementedError("function 'update' not implemented in {}.".
                                  format(self.__class__.__name__))

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
                self.__class__.__name__))

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
        raise NotImplementedError("function 'name' not implemented in {}.".
                                  format(self.__class__.__name__))

    def add_metric_op(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`add_metric_op` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`add_metric_op(output1, output2, ..., label1, label2,...)`

        If :code:`add_metric_op` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic

    Examples:
        
        .. code-block:: python

        from paddle import fluid
        from paddle.incubate.hapi.metrics import Accuracy
        from paddle.incubate.hapi.loss import CrossEntropy
        from paddle.incubate.hapi.datasets import MNIST
        from paddle.incubate.hapi.model import Input
        from paddle.incubate.hapi.vision.models import LeNet 

        fluid.enable_dygraph()

        train_dataset = MNIST(mode='train')

        model = LeNet()
        optim = fluid.optimizer.Adam(
            learning_rate=0.001, parameter_list=model.parameters())

        inputs = [Input([-1, 1, 28, 28], 'float32', name='image')]
        labels = [Input([None, 1], 'int64', name='label')]
            
        model.prepare(
            optim,
            loss_function=CrossEntropy(average=False),
            metrics=Accuracy(),
            inputs=inputs,
            labels=labels)

        model.fit(train_dataset, batch_size=64)

    """

    def __init__(self, topk=(1, ), name=None, *args, **kwargs):
        super(Accuracy, self).__init__(*args, **kwargs)
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def add_metric_op(self, pred, label, *args):
        pred = fluid.layers.argsort(pred, descending=True)[1][:, :self.maxk]
        correct = pred == label
        return fluid.layers.cast(correct, dtype='float32')

    def update(self, correct, *args):
        accs = []
        for i, k in enumerate(self.topk):
            num_corrects = correct[:, :k].sum()
            num_samples = len(correct)
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        return accs

    def reset(self):
        self.total = [0.] * len(self.topk)
        self.count = [0] * len(self.topk)

    def accumulate(self):
        res = []
        for t, c in zip(self.total, self.count):
            res.append(float(t) / c)
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
            self._name = ['{}_top{}'.format(name, k) for k in self.topk]
        else:
            self._name = [name]

    def name(self):
        return self._name