analyzer_ernie_tester.h 4.1 KB
Newer Older
Z
Zuza 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

using paddle::PaddleTensor;

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

  tensors->clear();
  tensors->reserve(4);

  int i = 0;
  auto input_name = FLAGS_ernie_large ? "eval_placeholder_" : "placeholder_";
  for (; i < 3; i++) {
    paddle::PaddleTensor temp;
    ParseTensor<int64_t>(fields[i], &temp);
    temp.name = input_name + std::to_string(i);
    tensors->push_back(temp);
  }

  // input_mask
  paddle::PaddleTensor input_mask;
  ParseTensor<float>(fields[i], &input_mask);
  input_mask.name = input_name + std::to_string(i);
  tensors->push_back(input_mask);

  return true;
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_infer_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_infer_data);
  std::string line;
  int sample = 0;

  // The unit-test dataset only have 10 samples, each sample have 5 feeds.
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
    ParseLine(line, &feed_data);
    inputs->push_back(std::move(feed_data));
    sample++;
    if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
  }
  LOG(INFO) << "number of samples: " << sample;
  return true;
}

void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false,
               bool use_gpu = false) {
  cfg->SetModel(FLAGS_infer_model);
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
  if (use_gpu) {
    cfg->EnableUseGpu(100, 0);
  } else {
    cfg->DisableGpu();
  }
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_cpu_num_threads);
}

J
jianghaicheng 已提交
151 152 153 154 155 156
void SetIpuConfig(AnalysisConfig *cfg, int batch_size = 1) {
  cfg->SetModel(FLAGS_infer_model);
  // num_ipu, enable_pipelining, batches_per_step, batch_size, need_avg_shard
  cfg->EnableIpu(4, false, 1, batch_size, true);
}

Z
Zuza 已提交
157 158
}  // namespace inference
}  // namespace paddle