mobilenetv1.py 7.7 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
17

18
from paddle.utils.download import get_weights_path_from_url
19
from ..ops import ConvNormActivation
L
LielinJiang 已提交
20

21
__all__ = []
L
LielinJiang 已提交
22 23 24

model_urls = {
    'mobilenetv1_1.0':
25 26
    ('https://paddle-hapi.bj.bcebos.com/models/mobilenetv1_1.0.pdparams',
     '3033ab1975b1670bef51545feb65fc45')
L
LielinJiang 已提交
27 28 29
}


L
LielinJiang 已提交
30 31 32
class DepthwiseSeparable(nn.Layer):
    def __init__(self, in_channels, out_channels1, out_channels2, num_groups,
                 stride, scale):
L
LielinJiang 已提交
33 34
        super(DepthwiseSeparable, self).__init__()

35
        self._depthwise_conv = ConvNormActivation(
L
LielinJiang 已提交
36 37 38
            in_channels,
            int(out_channels1 * scale),
            kernel_size=3,
L
LielinJiang 已提交
39 40
            stride=stride,
            padding=1,
41
            groups=int(num_groups * scale))
L
LielinJiang 已提交
42

43
        self._pointwise_conv = ConvNormActivation(
L
LielinJiang 已提交
44 45 46
            int(out_channels1 * scale),
            int(out_channels2 * scale),
            kernel_size=1,
L
LielinJiang 已提交
47 48 49
            stride=1,
            padding=0)

L
LielinJiang 已提交
50 51 52 53
    def forward(self, x):
        x = self._depthwise_conv(x)
        x = self._pointwise_conv(x)
        return x
L
LielinJiang 已提交
54 55


L
LielinJiang 已提交
56
class MobileNetV1(nn.Layer):
L
LielinJiang 已提交
57 58 59 60 61 62 63 64 65 66 67 68
    """MobileNetV1 model from
    `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.

    Args:
        scale (float): scale of channels in each layer. Default: 1.0.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.

    Examples:
        .. code-block:: python

69
            import paddle
70
            from paddle.vision.models import MobileNetV1
L
LielinJiang 已提交
71 72

            model = MobileNetV1()
73 74 75 76 77

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
L
LielinJiang 已提交
78 79
    """

L
LielinJiang 已提交
80
    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
L
LielinJiang 已提交
81 82 83 84 85 86
        super(MobileNetV1, self).__init__()
        self.scale = scale
        self.dwsl = []
        self.num_classes = num_classes
        self.with_pool = with_pool

87
        self.conv1 = ConvNormActivation(
L
LielinJiang 已提交
88 89 90
            in_channels=3,
            out_channels=int(32 * scale),
            kernel_size=3,
L
LielinJiang 已提交
91 92 93 94 95
            stride=2,
            padding=1)

        dws21 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
96 97 98
                in_channels=int(32 * scale),
                out_channels1=32,
                out_channels2=64,
L
LielinJiang 已提交
99 100 101 102 103 104 105 106
                num_groups=32,
                stride=1,
                scale=scale),
            name="conv2_1")
        self.dwsl.append(dws21)

        dws22 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
107 108 109
                in_channels=int(64 * scale),
                out_channels1=64,
                out_channels2=128,
L
LielinJiang 已提交
110 111 112 113 114 115 116 117
                num_groups=64,
                stride=2,
                scale=scale),
            name="conv2_2")
        self.dwsl.append(dws22)

        dws31 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
118 119 120
                in_channels=int(128 * scale),
                out_channels1=128,
                out_channels2=128,
L
LielinJiang 已提交
121 122 123 124 125 126 127 128
                num_groups=128,
                stride=1,
                scale=scale),
            name="conv3_1")
        self.dwsl.append(dws31)

        dws32 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
129 130 131
                in_channels=int(128 * scale),
                out_channels1=128,
                out_channels2=256,
L
LielinJiang 已提交
132 133 134 135 136 137 138 139
                num_groups=128,
                stride=2,
                scale=scale),
            name="conv3_2")
        self.dwsl.append(dws32)

        dws41 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
140 141 142
                in_channels=int(256 * scale),
                out_channels1=256,
                out_channels2=256,
L
LielinJiang 已提交
143 144 145 146 147 148 149 150
                num_groups=256,
                stride=1,
                scale=scale),
            name="conv4_1")
        self.dwsl.append(dws41)

        dws42 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
151 152 153
                in_channels=int(256 * scale),
                out_channels1=256,
                out_channels2=512,
L
LielinJiang 已提交
154 155 156 157 158 159 160 161 162
                num_groups=256,
                stride=2,
                scale=scale),
            name="conv4_2")
        self.dwsl.append(dws42)

        for i in range(5):
            tmp = self.add_sublayer(
                sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
163 164 165
                    in_channels=int(512 * scale),
                    out_channels1=512,
                    out_channels2=512,
L
LielinJiang 已提交
166 167 168 169 170 171 172 173
                    num_groups=512,
                    stride=1,
                    scale=scale),
                name="conv5_" + str(i + 1))
            self.dwsl.append(tmp)

        dws56 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
174 175 176
                in_channels=int(512 * scale),
                out_channels1=512,
                out_channels2=1024,
L
LielinJiang 已提交
177 178 179 180 181 182 183 184
                num_groups=512,
                stride=2,
                scale=scale),
            name="conv5_6")
        self.dwsl.append(dws56)

        dws6 = self.add_sublayer(
            sublayer=DepthwiseSeparable(
L
LielinJiang 已提交
185 186 187
                in_channels=int(1024 * scale),
                out_channels1=1024,
                out_channels2=1024,
L
LielinJiang 已提交
188 189 190 191 192 193 194
                num_groups=1024,
                stride=1,
                scale=scale),
            name="conv6")
        self.dwsl.append(dws6)

        if with_pool:
C
cnn 已提交
195
            self.pool2d_avg = nn.AdaptiveAvgPool2D(1)
L
LielinJiang 已提交
196 197 198 199 200 201

        if num_classes > 0:
            self.fc = nn.Linear(int(1024 * scale), num_classes)

    def forward(self, x):
        x = self.conv1(x)
L
LielinJiang 已提交
202
        for dws in self.dwsl:
L
LielinJiang 已提交
203
            x = dws(x)
L
LielinJiang 已提交
204 205

        if self.with_pool:
L
LielinJiang 已提交
206
            x = self.pool2d_avg(x)
L
LielinJiang 已提交
207 208

        if self.num_classes > 0:
L
LielinJiang 已提交
209 210 211
            x = paddle.flatten(x, 1)
            x = self.fc(x)
        return x
L
LielinJiang 已提交
212 213 214 215 216 217 218 219 220


def _mobilenet(arch, pretrained=False, **kwargs):
    model = MobileNetV1(**kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
221 222

        param = paddle.load(weight_path)
223
        model.load_dict(param)
L
LielinJiang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237

    return model


def mobilenet_v1(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV1
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        scale: (float): scale of channels in each layer. Default: 1.0.

    Examples:
        .. code-block:: python

238
            import paddle
239
            from paddle.vision.models import mobilenet_v1
L
LielinJiang 已提交
240 241 242 243 244 245 246 247

            # build model
            model = mobilenet_v1()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v1(pretrained=True)

            # build mobilenet v1 with scale=0.5
248 249 250 251 252 253
            model_scale = mobilenet_v1(scale=0.5)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
L
LielinJiang 已提交
254 255 256 257
    """
    model = _mobilenet(
        'mobilenetv1_' + str(scale), pretrained, scale=scale, **kwargs)
    return model