test_rnn_nets.py 12.1 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask

import numpy as np
import unittest

from convert import convert_params_for_net
from rnn_numpy import SimpleRNN, LSTM, GRU


class TestSimpleRNN(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestSimpleRNN, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
32
        self.place = place
F
Feiyu Chan 已提交
33 34

    def setUp(self):
35 36 37 38
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        rnn1 = SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
58
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
59 60 61 62 63 64 65 66 67 68 69 70
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
71
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

86
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
87 88 89
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
90
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
F
Feiyu Chan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        y2 = paddle.multiply(y2, mask, axis=0)

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()


class TestGRU(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestGRU, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
108
        self.place = place
F
Feiyu Chan 已提交
109 110

    def setUp(self):
111 112 113 114
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        rnn1 = GRU(16,
                   32,
                   2,
                   time_major=self.time_major,
                   direction=self.direction)
        rnn2 = paddle.nn.GRU(16,
                             32,
                             2,
                             time_major=self.time_major,
                             direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
140
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
141 142 143 144 145 146 147 148 149 150 151 152
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
153
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

168
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
169 170 171
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
172
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
F
Feiyu Chan 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        y2 = paddle.multiply(y2, mask, axis=0)

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()


class TestLSTM(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestLSTM, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
190
        self.place = place
F
Feiyu Chan 已提交
191 192

    def setUp(self):
193 194 195 196
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        rnn1 = LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)
        prev_c = np.random.randn(2 * self.num_directions, 4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
        y2, (h2, c2) = rnn2(
218 219
            paddle.to_tensor(x),
            (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)))
F
Feiyu Chan 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (h1, c1) = rnn1(x)
233
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (h1, c1) = rnn1(x, sequence_length=sequence_length)

249
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
250 251 252
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
253
        y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
F
Feiyu Chan 已提交
254 255 256 257 258 259
        y2 = paddle.multiply(y2, mask, axis=0)

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    def test_predict(self):
        place = paddle.set_device(self.place)
        paddle.manual_seed(123)
        np.random.seed(123)

        class Net(paddle.nn.Layer):
            def __init__(self):
                super(Net, self).__init__()
                self.rnn1 = paddle.nn.LSTM(
                    16, 32, 2, direction="bidirectional", dropout=0.1)

            def forward(self, input):
                return self.rnn1(input)

        x = paddle.randn((4, 10, 16))
        x.stop_gradient = False
        seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
        mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
        mask = paddle.unsqueeze(mask, [2])
        rnn = Net()
        y, (h, c) = rnn(x)
        y = y * mask
        loss = paddle.mean(y)
        loss.backward()
        optimizer = paddle.optimizer.Adam(
            learning_rate=0.1, parameters=rnn.parameters())
        optimizer.step()
        rnn.eval()
        y, (h, c) = rnn(x)
        # `jit.to_static` would include a train_program, eval mode might cause
        # some errors currently, such as dropout grad op gets `is_test == True`.
        rnn.train()

        rnn = paddle.jit.to_static(
            rnn,
            [paddle.static.InputSpec(
                shape=[None, None, 16], dtype=x.dtype)])
        paddle.jit.save(rnn, "./inference/lstm_infer")

        paddle.enable_static()

        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            exe = paddle.static.Executor(place)
            [inference_program, feed_target_names,
             fetch_targets] = paddle.static.load_inference_model(
                 dirname="./inference",
                 executor=exe,
                 model_filename="lstm_infer.pdmodel",
                 params_filename="lstm_infer.pdiparams")
            results = exe.run(inference_program,
                              feed={feed_target_names[0]: x.numpy()},
                              fetch_list=fetch_targets)
            np.testing.assert_equal(
                y.numpy(), results[0])  # eval results equal predict results
        paddle.disable_static()

F
Feiyu Chan 已提交
317 318 319 320
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
321
        self.test_predict()
F
Feiyu Chan 已提交
322 323 324 325 326 327 328 329 330 331 332 333


def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
    for direction in ["forward", "backward", "bidirectional"]:
        for time_major in [True, False]:
            for device in devices:
                for test_class in [TestSimpleRNN, TestLSTM, TestGRU]:
                    suite.addTest(test_class(time_major, direction, device))
    return suite