test_elementwise_pow_op.py 9.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Q
Qiao Longfei 已提交
15
import unittest
16

Q
Qiao Longfei 已提交
17
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19

20
import paddle
21
import paddle.fluid as fluid
Q
Qiao Longfei 已提交
22 23


24 25 26 27 28 29
def pow_grad(x, y, dout):
    dx = dout * y * np.power(x, (y - 1))
    dy = dout * np.log(x) * np.power(x, y)
    return dx, dy


Q
Qiao Longfei 已提交
30 31 32
class TestElementwisePowOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
33
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
34
        self.inputs = {
35
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
36
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64"),
Q
Qiao Longfei 已提交
37 38 39 40
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
41 42 43 44
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
45

46
    def test_check_grad_normal(self):
47 48 49 50
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
51

Q
Qiao Longfei 已提交
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TestElementwisePowOp_ZeroDim1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, []).astype("float64"),
            'Y': np.random.uniform(1, 2, []).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_ZeroDim2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, []).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_ZeroDim3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, []).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64"),
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


86 87 88
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
89
        self.python_api = paddle.pow
90
        self.inputs = {
91
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
92
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64"),
93 94 95 96 97 98 99
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
100
        self.python_api = paddle.pow
101
        self.inputs = {
102
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
103
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64"),
104 105 106 107
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


108
@skip_check_grad_ci(
109 110
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
Q
Qiao Longfei 已提交
111 112 113
class TestElementwisePowOp_scalar(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
114
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
115
        self.inputs = {
116
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
117
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64),
118 119 120 121 122 123 124
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
125
        self.python_api = paddle.pow
126
        self.inputs = {
127
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
128
            'Y': np.random.uniform(1, 3, [100]).astype("float64"),
129 130 131 132 133 134 135
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
136
        self.python_api = paddle.pow
137
        self.inputs = {
138
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
139
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
Q
Qiao Longfei 已提交
140 141 142 143
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


144 145 146
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
147
        self.python_api = paddle.pow
148
        self.inputs = {
149
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
150
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
151 152 153
        }
        self.attrs = {'axis': 1}
        self.outputs = {
154
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
155 156 157 158 159 160
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
161
        self.python_api = paddle.pow
162
        self.inputs = {
163
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
164
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64"),
165 166 167
        }
        self.attrs = {'axis': 0}
        self.outputs = {
168 169 170
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1)
            )
171 172 173 174 175 176
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
177
        self.python_api = paddle.pow
178
        self.inputs = {
179
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
180
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64"),
181 182 183
        }
        self.attrs = {'axis': 1}
        self.outputs = {
184 185 186
            'Out': np.power(
                self.inputs['X'], self.inputs['Y'].reshape(1, 20, 5, 1)
            )
187 188 189
        }


190 191 192
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
    def setUp(self):
        self.op_type = "elementwise_pow"
193
        self.python_api = paddle.pow
194
        self.inputs = {
195
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
196
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64"),
197 198 199 200
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


201 202 203
class TestElementwisePowOpInt(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
204
        self.python_api = paddle.pow
205 206 207 208
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
209 210 211 212
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
213 214 215 216 217 218 219 220 221 222


class TestElementwisePowGradOpInt(unittest.TestCase):
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
223 224 225
        self.grad_x = (
            self.grad_res * self.y * (self.x ** (self.y - 1)).astype("int")
        )
226
        # dy = dout * log(x) * pow(x, y)
227 228 229
        self.grad_y = (
            self.grad_res * np.log(self.x) * (self.x**self.y)
        ).astype("int")
230 231 232 233 234 235 236 237 238 239 240 241

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
242
                res.retain_grads()
243
                res.backward()
244 245 246
                np.testing.assert_array_equal(res.gradient(), self.grad_res)
                np.testing.assert_array_equal(x.gradient(), self.grad_x)
                np.testing.assert_array_equal(y.gradient(), self.grad_y)
247 248


249 250 251 252 253 254
class TestElementwisePowOpFP16(OpTest):
    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
255
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
256 257 258 259 260 261 262 263 264 265
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)

    def test_check_grad(self):
266 267 268 269 270 271 272 273
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=pow_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
            check_eager=True,
        )
274 275


Q
Qiao Longfei 已提交
276 277
if __name__ == '__main__':
    unittest.main()