nn.py 146.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20 21
from ..layers import square
from ..layers import cross_entropy
22
from ..layers import nn as F
23
from .. import dygraph_utils
M
minqiyang 已提交
24
from . import layers
25
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
26
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
27
from ..param_attr import ParamAttr
28
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
29 30
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
31
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
32
import numpy as np
33
import numbers
34
import logging
35

36
__all__ = [
37
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
38 39
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
40
    'SpectralNorm', 'TreeConv', 'MSELoss', 'L1Loss', 'NLLLoss', 'BCELoss'
41
]
M
minqiyang 已提交
42 43


X
Xin Pan 已提交
44
class Conv2D(layers.Layer):
45
    """
46 47
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
48 49 50
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
51 52 53
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
54
    and W is the width of the filter. If the groups is greater than 1,
55
    C will equal the number of input feature map divided by the groups.
56
    Please refer to UFLDL's `convolution
57
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
58
    for more details.
59 60 61 62 63 64 65 66
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

67
        Out = \\sigma (W \\ast X + b)
68 69 70

    Where:

71 72
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
73
    * :math:`\\ast`: Convolution operation.
74
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

97
    Parameters:
98
        num_channels(int): The number of channels in the input image.
99
        num_filters(int): The number of filter. It is as same as the output
100 101
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
102 103
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
104
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
105
            contain two integers, (stride_H, stride_W). Otherwise, the
106 107
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
108
            contain two integers, (padding_H, padding_W). Otherwise, the
109 110
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
111
            contain two integers, (dilation_H, dilation_W). Otherwise, the
112 113
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
114 115 116
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
117 118
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
119 120 121 122
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
123
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
124 125 126 127
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
128 129 130 131 132
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
133

134 135 136 137
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
138

139 140 141
    Returns:
        None
    
142
    Raises:
143
        ValueError: if ``use_cudnn`` is not a bool value.
144 145 146

    Examples:
        .. code-block:: python
L
lujun 已提交
147

148 149 150 151 152
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

153
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
154
          with fluid.dygraph.guard():
155
              conv2d = Conv2D(3, 2, 3)
156 157
              data = to_variable(data)
              conv = conv2d(data)
158 159 160

    """

M
minqiyang 已提交
161
    def __init__(self,
162
                 num_channels,
M
minqiyang 已提交
163 164 165 166 167 168 169 170
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
171 172 173
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
174
        assert param_attr is not False, "param_attr should not be False here."
175 176
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
177 178 179 180
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
181
        self._act = act
M
minqiyang 已提交
182 183 184
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
185 186 187 188 189
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
190

191 192 193 194 195
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
196

197
        self._num_channels = num_channels
198 199
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
200
        else:
201
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
202
                raise ValueError("num_channels must be divisible by groups.")
203 204
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
205
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
206 207

        def _get_default_param_initializer():
208 209
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
210 211 212
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

213
        self.weight = self.create_parameter(
214
            attr=self._param_attr,
M
minqiyang 已提交
215 216 217 218
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

219
        self.bias = self.create_parameter(
220 221
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
222 223
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
224 225

    def forward(self, input):
226 227 228 229 230 231 232 233 234 235 236
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
237 238
        inputs = {
            'Input': [input],
239
            'Filter': [self.weight],
240 241 242 243 244 245 246 247 248
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
249 250 251

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
252 253 254
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
255 256 257 258
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
259
                'Filter': self.weight,
M
minqiyang 已提交
260
            },
M
minqiyang 已提交
261
            outputs={"Output": pre_bias},
262
            attrs=attrs)
M
minqiyang 已提交
263

264
        if self.bias is not None:
265 266 267 268 269
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
270
                        'Y': [self.bias]},
271 272 273 274
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
275

L
lujun 已提交
276
        # Currently, we don't support inplace in dygraph mode
277
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
278 279


L
lujun 已提交
280
class Conv3D(layers.Layer):
281 282 283 284 285
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
286 287
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
288 289 290 291 292 293 294 295 296 297 298 299 300 301
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
302
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

328
    Parameters:
329
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
330
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
331
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
332
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
333 334 335
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
336
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
337 338
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
339
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
340 341
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
342
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
343 344
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
345 346 347
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
348 349
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
350 351 352
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
353 354
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
355 356 357
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
358 359 360 361 362
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
363
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
364

D
DuYao 已提交
365 366 367 368
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
369

370
    Returns:
D
DuYao 已提交
371
        None.
372 373 374 375 376 377 378 379

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

380 381 382 383 384 385
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
386
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
387 388
              ret = conv3d(fluid.dygraph.base.to_variable(data))

389 390
    """

L
lujun 已提交
391
    def __init__(self,
392
                 num_channels,
L
lujun 已提交
393 394 395 396 397 398 399 400 401
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
402 403
                 act=None,
                 dtype='float32'):
L
lujun 已提交
404
        assert param_attr is not False, "param_attr should not be False here."
405 406
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
407 408 409
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
410
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
411 412
        self._act = act
        self._use_cudnn = use_cudnn
413 414 415 416
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
417
        self._dtype = dtype
418 419

        if self._groups is None:
420
            num_filter_channels = self._num_channels
L
lujun 已提交
421
        else:
422
            if self._num_channels % self._groups != 0:
L
lujun 已提交
423
                raise ValueError("num_channels must be divisible by groups.")
424
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
425

426 427
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
428 429 430

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
431
                2] * self._num_channels
L
lujun 已提交
432 433 434
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

435
        self.weight = self.create_parameter(
436
            attr=self._param_attr,
L
lujun 已提交
437 438 439 440
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

441
        self.bias = self.create_parameter(
442 443
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
444 445 446 447 448 449 450 451
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
452
            type='conv3d',
L
lujun 已提交
453 454
            inputs={
                'Input': input,
455
                'Filter': self.weight,
L
lujun 已提交
456 457 458 459 460 461 462 463 464 465 466
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

467
        if self.bias is not None:
468 469 470 471 472
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
473
                        'Y': [self.bias]},
474 475 476 477
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
478 479 480 481 482

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
548

549
    Parameters:
550
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
551 552
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
553
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
554
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
555
            Otherwise, the filter will be a square.
D
DuYao 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
571
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
572 573
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
574 575 576 577
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
578 579
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
580 581
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
582 583
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
584 585 586
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
587 588 589 590 591 592 593
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
594

D
DuYao 已提交
595 596 597 598
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
599

L
lujun 已提交
600
    Returns:
D
DuYao 已提交
601
        None.
L
lujun 已提交
602 603 604 605 606 607 608 609

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

610 611 612 613 614 615
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
616
                    num_channels=3,
617 618 619 620 621
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
622 623
    """

L
lujun 已提交
624
    def __init__(self,
625
                 num_channels,
L
lujun 已提交
626
                 num_filters,
627
                 filter_size,
L
lujun 已提交
628 629 630 631 632 633 634 635
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
636 637
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
638 639 640 641 642 643 644
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
645
        self._num_channels = num_channels
L
lujun 已提交
646 647 648 649 650 651
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
652
        self._dtype = dtype
L
lujun 已提交
653

654 655
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
656

657 658
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
659
        self.weight = self.create_parameter(
L
lujun 已提交
660
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
661 662 663 664 665
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
666 667 668 669 670 671 672

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
673
                    'Filter': [self.weight]},
L
lujun 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
689
                        'Y': [self.bias]},
L
lujun 已提交
690 691 692 693 694 695 696 697 698
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
699
class Pool2D(layers.Layer):
700
    """
701 702 703 704 705
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
706 707
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

753
    Parameters:
754
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
755
            it must contain two integers, (pool_size_Height, pool_size_Width).
756 757 758 759
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
760
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
761 762 763
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
764
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
765 766 767 768 769 770 771
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
772 773

    Returns:
774
        None
775 776 777 778 779 780 781 782 783 784

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
785
          import paddle.fluid as fluid
786 787
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
788 789

          with fluid.dygraph.guard():
790
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
791
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
792 793 794
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
795
             pool2d_res = pool2d(to_variable(data))
796 797 798

    """

M
minqiyang 已提交
799 800 801 802 803 804 805 806
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
807
                 exclusive=True):
M
minqiyang 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

821
        super(Pool2D, self).__init__()
M
minqiyang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
835 836 837 838 839 840 841 842
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

843 844 845 846
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

847 848 849 850 851 852 853 854 855 856 857 858 859
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
860 861
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
862 863 864
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
865
            outputs={"Out": pool_out},
866
            attrs=attrs)
M
minqiyang 已提交
867
        return pool_out
M
minqiyang 已提交
868 869


S
songyouwei 已提交
870 871 872 873 874 875 876 877 878 879
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

880
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
940
        if in_dygraph_mode():
941 942 943
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
                            'transpose_Y', False, "alpha", 1)
944 945 946 947 948
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
949 950 951 952

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

953
        attrs = {
S
songyouwei 已提交
954 955 956
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
957 958
        }
        inputs = {"X": [input], "Y": [self.weight]}
959

S
songyouwei 已提交
960 961
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
962
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
963
        if self.bias is not None:
S
songyouwei 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()
        assert bias_attr is not False, "bias_attr should not be False in InstanceNorm."

        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

        self.scale = self.create_parameter(
            attr=self._param_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(1.0),
            is_bias=False)
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[num_channels],
            dtype=self._dtype,
            default_initializer=Constant(0.0),
            is_bias=True)

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

        inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1103
class BatchNorm(layers.Layer):
1104
    """
1105 1106 1107 1108 1109
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1110 1111 1112 1113
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1114 1115 1116
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1117 1118 1119 1120 1121 1122 1123 1124

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1125 1126
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1127 1128 1129

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1130 1131 1132 1133 1134 1135
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1136

1137 1138
    The normalization function formula is as follows:
 
1139 1140 1141
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1142 1143 1144 1145 1146 1147
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1148

1149
    Parameters:
1150
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1151
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1152 1153 1154
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1155 1156 1157
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1158 1159 1160
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1161
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1162 1163 1164
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1165 1166 1167 1168 1169 1170
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1171 1172
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1173
        use_global_stats(bool, optional): Whether to use global mean and
1174 1175 1176
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1177 1178 1179 1180
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1181 1182

    Returns:
1183
        None
1184 1185 1186

    Examples:
        .. code-block:: python
L
lujun 已提交
1187 1188

          import paddle.fluid as fluid
1189 1190
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1191

1192
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1193
          with fluid.dygraph.guard():
1194
              x = to_variable(x)
1195
              batch_norm = fluid.BatchNorm(10)
1196
              hidden1 = batch_norm(x)
1197 1198
    """

M
minqiyang 已提交
1199 1200 1201 1202 1203 1204 1205 1206
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1207
                 dtype='float32',
M
minqiyang 已提交
1208 1209 1210 1211
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1212
                 do_model_average_for_mean_and_var=True,
1213 1214
                 use_global_stats=False,
                 trainable_statistics=False):
1215
        super(BatchNorm, self).__init__()
1216
        self._param_attr = param_attr
1217
        self._bias_attr = bias_attr
1218
        self._act = act
M
minqiyang 已提交
1219 1220 1221

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1222 1223
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1224 1225 1226 1227 1228 1229
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1230
        self.weight = self.create_parameter(
1231
            attr=self._param_attr,
M
minqiyang 已提交
1232 1233 1234
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1235
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1236

1237
        self.bias = self.create_parameter(
1238
            attr=self._bias_attr,
M
minqiyang 已提交
1239 1240 1241
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1242
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1243

1244
        self._mean = self.create_parameter(
M
minqiyang 已提交
1245 1246 1247 1248 1249 1250 1251
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1252
        self._mean.stop_gradient = True
M
minqiyang 已提交
1253

1254
        self._variance = self.create_parameter(
M
minqiyang 已提交
1255 1256 1257 1258 1259 1260 1261
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1262
        self._variance.stop_gradient = True
M
minqiyang 已提交
1263 1264

        self._in_place = in_place
1265
        self._data_layout = data_layout
M
minqiyang 已提交
1266 1267 1268
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1269
        self._fuse_with_relu = False
M
minqiyang 已提交
1270
        self._use_global_stats = use_global_stats
1271
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1272 1273 1274 1275 1276 1277 1278

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1279 1280 1281

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1282 1283
                     "is_test", not self.training, "data_layout",
                     self._data_layout, "use_mkldnn", False, "fuse_with_relu",
1284
                     self._fuse_with_relu, "use_global_stats",
1285 1286
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1287 1288 1289 1290 1291 1292
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1293 1294 1295
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1296 1297 1298 1299 1300 1301 1302
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1303 1304
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1305
        }
M
minqiyang 已提交
1306

1307 1308 1309 1310 1311 1312 1313 1314
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1315 1316 1317 1318 1319 1320
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1321 1322 1323 1324 1325 1326 1327 1328 1329

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1330
        self._helper.append_op(
1331
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1332

L
lujun 已提交
1333
        # Currently, we don't support inplace in dygraph mode
1334
        return self._helper.append_activation(batch_norm_out, self._act)
1335 1336


1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1446 1447 1448 1449
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1450 1451 1452 1453 1454 1455
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1456 1457
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1458

1459
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1460 1461 1462 1463 1464 1465 1466
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1467 1468
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1482

1483
    Parameters:
L
lujun 已提交
1484 1485
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1504
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1505 1506 1507
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1508

Z
zhongpu 已提交
1509 1510
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1511

1512
    Returns:
Z
zhongpu 已提交
1513
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1514 1515

    Examples:
1516

1517 1518
        .. code-block:: python

L
lujun 已提交
1519 1520 1521 1522
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1523
          # example 1
1524 1525
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1526 1527
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1528
              emb = fluid.dygraph.Embedding(
1529 1530 1531
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1532
              static_rlt3 = emb(base.to_variable(inp_word))
1533
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1548 1549
    """

1550 1551 1552 1553 1554 1555 1556
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1557
        super(Embedding, self).__init__()
1558 1559 1560 1561
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1562
            size[0] + padding_idx)
1563 1564 1565

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1566
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1567 1568 1569
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1570
        self.weight = self.create_parameter(
1571 1572 1573 1574 1575 1576
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1577 1578 1579 1580 1581 1582
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1583
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1584 1585 1586 1587 1588 1589
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1590

1591 1592
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1593
            type='lookup_table_v2',
1594
            inputs={'Ids': input,
1595
                    'W': self.weight},
1596
            outputs={'Out': out},
1597
            attrs=attrs)
1598 1599

        return out
M
minqiyang 已提交
1600 1601


1602
class LayerNorm(layers.Layer):
1603
    """
1604 1605 1606
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1607
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1608

1609
    The formula is as follows:
1610

1611
    ..  math::
1612

1613
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1614

1615
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1616

1617
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1618

1619 1620 1621 1622 1623
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1624

1625
    Parameters:
1626 1627 1628 1629
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1630
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1631
            normalization. Default: True.
1632
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1633
            normalization. Default: True.
1634
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1635
            division by zero. Default: 1e-05.
1636
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1637 1638 1639
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1640
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1641
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1642 1643 1644
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1645
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1646
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1647
                  Default: None.
1648 1649
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1650
    Returns:
1651
        None
1652

1653
    Examples:
1654

1655 1656 1657
        .. code-block:: python

          import paddle.fluid as fluid
1658
          from paddle.fluid.dygraph.base import to_variable
1659 1660
          import numpy

1661
          x = numpy.random.random((3, 32, 32)).astype('float32')
1662
          with fluid.dygraph.guard():
1663
              x = to_variable(x)
1664
              layerNorm = fluid.LayerNorm([32, 32])
1665
              ret = layerNorm(x)
1666

1667
    """
1668

1669
    def __init__(self,
1670
                 normalized_shape,
1671 1672 1673 1674 1675
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1676 1677 1678 1679 1680
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1681

1682
        self._normalized_shape = list(normalized_shape)
1683 1684 1685 1686 1687 1688
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1689 1690
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1691
        if self._scale:
1692
            self.weight = self.create_parameter(
1693 1694 1695 1696
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1697 1698
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1699
                logging.warn("param_attr are only available with scale is True")
1700
            self.weight = None
1701

1702 1703
        if self._shift:
            assert self._bias_attr is not False
1704
            self.bias = self.create_parameter(
1705 1706 1707 1708
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1709 1710
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1711
                logging.warn("bias_attr are only available with shift is True")
1712
            self.bias = None
1713 1714

    def forward(self, input):
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1726 1727 1728 1729 1730 1731 1732 1733

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1734 1735 1736
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1737
        inputs = dict()
1738
        inputs['X'] = [input]
1739
        if self._scale:
1740
            inputs['Scale'] = [self.weight]
1741
        if self._shift:
1742 1743 1744 1745 1746 1747
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1769
        return self._helper.append_activation(layer_norm_out, act=self._act)
1770 1771


M
minqiyang 已提交
1772 1773 1774
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1775 1776 1777 1778 1779
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1790
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1816
    Parameters:
L
lujun 已提交
1817
        size (int): The input dimension value.
D
DuYao 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1827 1828 1829 1830


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1831 1832 1833 1834
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1835 1836 1837 1838 1839
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1840
            is initialized zero. The default value is None.
L
lujun 已提交
1841
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1842
                             The default value is 'tanh'.
L
lujun 已提交
1843
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1844 1845 1846
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1847

D
DuYao 已提交
1848 1849 1850 1851
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1852

M
minqiyang 已提交
1853
    Returns:
D
DuYao 已提交
1854 1855 1856 1857
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1871
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1872 1873 1874
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1875
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1876 1877 1878
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1889
        super(GRUUnit, self).__init__()
1890
        self._bias_attr = bias_attr
M
minqiyang 已提交
1891 1892 1893 1894 1895
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1896 1897
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1898

M
minqiyang 已提交
1899
        self._dtype = dtype
M
minqiyang 已提交
1900 1901
        size = size // 3
        # create weight
1902
        self.weight = self.create_parameter(
M
minqiyang 已提交
1903
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1904 1905

        # create bias
M
minqiyang 已提交
1906
        bias_size = [1, 3 * size]
1907
        self._bias_size = bias_size
1908
        self.bias = self.create_parameter(
M
minqiyang 已提交
1909
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1910

M
minqiyang 已提交
1911
    def forward(self, input, hidden):
1912 1913 1914 1915 1916 1917
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1918 1919 1920 1921
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1922 1923 1924 1925 1926
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1927
        if self.bias is not None:
1928
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1929 1930 1931 1932 1933
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1943 1944
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1945 1946 1947
            })

        return updated_hidden, reset_hidden_pre, gate
1948 1949 1950 1951


class NCE(layers.Layer):
    """
1952 1953 1954 1955 1956
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1957
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1958

1959
    Parameters:
1960 1961
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1962
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1963 1964 1965
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1966
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1967 1968 1969 1970
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1971
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1972
        sampler (str, optional): The sampler used to sample class from negative classes.
1973 1974
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1975
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1976
                       It is used when sampler is set to 'custom_dist'.
1977
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1978
                       Default: None.
1979 1980
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1981
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1982

1983 1984
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1985

1986 1987
        **bias** (Parameter or None): the learnable bias of this layer.
    
1988
    Returns:
1989
        None
1990 1991 1992 1993

    Examples:
        .. code-block:: python

1994 1995 1996
            import numpy as np
            import paddle.fluid as fluid

1997
            window_size = 5
1998 1999
            dict_size = 20
            label_word = int(window_size // 2) + 1
2000
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2022
                nce = fluid.NCE(
2023
                             num_total_classes=dict_size,
2024
                             dim=embs3.shape[1],
2025 2026 2027 2028 2029 2030 2031
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2032 2033
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2034 2035 2036 2037 2038

    """

    def __init__(self,
                 num_total_classes,
2039
                 dim,
2040
                 sample_weight=None,
2041 2042 2043 2044 2045 2046
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2047 2048 2049
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2050 2051 2052
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2053
        self._dtype = dtype
2054
        self._inputs = dict()
2055
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2143
        self.weight = self.create_parameter(
2144 2145 2146
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2147
            dtype=self._dtype)
2148
        if self._bias_attr:
2149
            self.bias = self.create_parameter(
2150 2151 2152
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2153
                dtype=self._dtype)
2154 2155
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2156

2157
    def forward(self, input, label, sample_weight=None):
2158 2159 2160 2161
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2190 2191 2192 2193
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2194 2195 2196 2197 2198
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2199
    Parameters:
L
lujun 已提交
2200
        mode (str): The mode for weight sharing. It supports all, channel
2201 2202 2203
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2204 2205 2206
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2207
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2208 2209
          This argument is required when mode is "element".
          Default: None.
2210 2211
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2212
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2213

2214 2215 2216
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2217
    Returns:
2218
        None
2219 2220 2221 2222 2223

    Examples:

        .. code-block:: python

L
lujun 已提交
2224
          import paddle.fluid as fluid
2225
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2226 2227 2228 2229
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2230
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2242
                 input_shape=inp_np.shape,
L
lujun 已提交
2243
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2244
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2245

2246 2247
    """

S
songyouwei 已提交
2248 2249 2250 2251 2252
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2253
                 dtype='float32'):
2254 2255
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2256 2257
        self._mode = mode
        self._param_attr = param_attr
2258
        self._dtype = dtype
S
songyouwei 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2273
        self.weight = self.create_parameter(
2274 2275 2276 2277 2278 2279 2280
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2281
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2282 2283 2284 2285
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2286
                    'Alpha': self.weight},
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2307
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2308

2309
    Parameters:
2310 2311 2312 2313 2314
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2315 2316 2317 2318
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2319
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2320
           If it is set to None, the bias is initialized zero. The default value is None.
2321
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2322

D
DuYao 已提交
2323 2324 2325 2326
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2327

2328 2329 2330 2331 2332 2333
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2334 2335 2336 2337 2338 2339 2340
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2341
                    input1_dim=5, input2_dim=4, output_dim=1000)
2342 2343
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2344 2345 2346
    """

    def __init__(self,
2347 2348 2349
                 input1_dim,
                 input2_dim,
                 output_dim,
2350 2351 2352
                 name=None,
                 act=None,
                 param_attr=None,
2353 2354 2355
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2356 2357 2358 2359
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2360 2361 2362
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2363
        self._inputs = dict()
2364
        self._dtype = dtype
2365

2366
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2367
        self.weight = self.create_parameter(
2368 2369 2370 2371
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2372
        bias_size = [1, self._output_dim]
2373
        self.bias = self.create_parameter(
2374 2375 2376 2377
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2378 2379

    def forward(self, x, y):
2380 2381 2382 2383
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2384
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2385
        if self.bias is not None:
2386
            self._inputs["Bias"] = self.bias
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2401
        return self._helper.append_activation(out, act=self._act)
2402 2403 2404 2405


class Conv2DTranspose(layers.Layer):
    """
2406 2407
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2408
    The convolution2D transpose layer calculates the output based on the input,
2409 2410 2411
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2412 2413
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2414 2415
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2416 2417 2418
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2419 2420
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2421 2422 2423 2424 2425 2426 2427 2428 2429

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2430 2431
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2432
    * :math:`\\ast`: Convolution operation.
2433
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2458
    Parameters:
2459
        num_channels(int): The number of channels in the input image.
2460
        num_filters(int): The number of the filter. It is as same as the output
2461
            feature map.
2462 2463 2464
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2465
        output_size(int or tuple, optional): The output image size. If output size is a
2466 2467 2468
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2469
            should follow the formula above. Default: None.
2470
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2471
            contain two integers, (padding_H, padding_W). Otherwise, the
2472 2473
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2474
            contain two integers, (stride_H, stride_W). Otherwise, the
2475 2476
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2477
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2478 2479
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2480 2481 2482 2483
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2484 2485
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2486 2487 2488
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2489
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2490 2491 2492 2493
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2494
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2495
            library is installed. Default: True.
2496
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2497
            Default: None.
2498
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2499

2500 2501
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2502

2503
        **bias** (Parameter or None): the learnable bias of this layer.
2504

2505 2506
    Returns:
        None
2507 2508 2509 2510

    Examples:
       .. code-block:: python

2511
          import paddle.fluid as fluid
2512
          import numpy as np
2513 2514

          with fluid.dygraph.guard():
2515
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2516
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2517
                    num_channels=32, num_filters=2, filter_size=3)
2518 2519
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2520 2521 2522
    """

    def __init__(self,
2523
                 num_channels,
2524
                 num_filters,
2525
                 filter_size,
2526 2527 2528 2529 2530 2531 2532 2533
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2534 2535 2536
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2537 2538 2539
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2540
        self._act = act
2541
        self._groups = groups
2542
        self._num_channels = num_channels
2543 2544 2545 2546 2547 2548 2549
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2550
        self._dtype = dtype
2551

2552 2553 2554
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2555
            self._op_type = 'depthwise_conv2d_transpose'
2556 2557
        else:
            self._op_type = 'conv2d_transpose'
2558 2559 2560 2561 2562

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2563 2564
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2576
        filter_shape = [self._num_channels, self._num_filters // self._groups
2577 2578
                        ] + self._filter_size

2579
        self.weight = self.create_parameter(
2580
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2581

2582
        self.bias = self.create_parameter(
2583 2584 2585 2586 2587
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2588
    def forward(self, input):
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2601 2602 2603 2604
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2615 2616 2617 2618
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2619
            inputs=inputs,
2620
            outputs={'Output': pre_bias},
2621
            attrs=attrs)
2622

2623
        if self.bias is not None:
2624 2625 2626 2627 2628
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2629
                        'Y': [self.bias]},
2630 2631 2632 2633 2634 2635
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2636 2637 2638 2639 2640 2641 2642 2643 2644
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2645
    Parameters:
L
lujun 已提交
2646
        name_scope(str): The name of this class.
2647
        num_filters (int): number of filters.
L
lujun 已提交
2648 2649 2650
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2663 2664 2665 2666
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2680
        assert not in_dygraph_mode(
2681
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2682 2683 2684 2685 2686 2687 2688
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2689
        self._act = act
2690

2691
    def _build_once(self, input):
2692 2693
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2694
        self.weight = self.create_parameter(
2695
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2696

2697
        self.bias = self.create_parameter(
2698 2699 2700 2701 2702
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2703 2704 2705 2706 2707 2708
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2709
                'Filter': [self.weight],
2710 2711 2712 2713 2714 2715 2716
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2717

2718
        if self.bias is not None:
2719 2720 2721 2722 2723
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2724
                        'Y': [self.bias]},
2725 2726 2727 2728 2729 2730
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2731 2732 2733


class RowConv(layers.Layer):
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2752
    Parameters:
L
lujun 已提交
2753
        name_scope(str): The name of this class.
2754 2755 2756
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2757 2758
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2759

2760 2761 2762
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2763
    Returns:
L
lujun 已提交
2764 2765
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2781 2782 2783 2784 2785
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2786
        assert not in_dygraph_mode(
2787
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2788 2789 2790 2791 2792
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2793
    def _build_once(self, input):
L
lujun 已提交
2794 2795
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2796
        self.weight = self.create_parameter(
2797 2798 2799 2800
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2801 2802 2803 2804 2805 2806

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2807
                    'Filter': [self.weight]},
L
lujun 已提交
2808 2809 2810 2811 2812 2813
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2814 2815 2816 2817 2818 2819
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2820
        channels(int): The number of channels of input.
2821 2822 2823 2824 2825 2826 2827 2828 2829
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2830
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2844
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2845
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2846 2847 2848 2849

    """

    def __init__(self,
2850
                 channels,
L
lujun 已提交
2851 2852 2853 2854 2855
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2856 2857 2858
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2859 2860 2861
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2862
        self._channels = channels
L
lujun 已提交
2863 2864
        self._groups = groups
        self._act = act
2865
        self._dtype = dtype
L
lujun 已提交
2866 2867 2868
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2869
        param_shape = [self._channels]
L
lujun 已提交
2870

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2882 2883 2884

    def forward(self, input):
        inputs = {'X': input}
2885
        if self.bias is not None:
2886
            inputs['Bias'] = self.bias
2887
        if self.weight is not None:
2888
            inputs['Scale'] = self.weight
L
lujun 已提交
2889 2890

        # create output
2891
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2913
    """
2914 2915
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2926
    :attr:`power_iters` should be a positive integer, do following
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2947
    Parameters:
2948
        weight_shape(list or tuple): The shape of weight parameter.
2949 2950 2951 2952
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2953
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2954 2955

    Returns:
2956
        None
2957 2958 2959 2960 2961

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2962
            import numpy as np
2963 2964

            with fluid.dygraph.guard():
2965 2966 2967
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2968 2969 2970

    """

2971 2972 2973 2974 2975 2976 2977
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2978 2979 2980
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2981
        self._dtype = dtype
L
lujun 已提交
2982

2983 2984 2985
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2986

2987
        self.weight_u = self.create_parameter(
L
lujun 已提交
2988 2989 2990 2991
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2992
        self.weight_u.stop_gradient = True
L
lujun 已提交
2993

2994
        self.weight_v = self.create_parameter(
L
lujun 已提交
2995 2996 2997 2998
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2999
        self.weight_v.stop_gradient = True
L
lujun 已提交
3000 3001

    def forward(self, weight):
3002 3003
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3004
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3020
    """
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3031
        feature_size(int): last dimension of nodes_vector.
3032 3033 3034 3035 3036 3037 3038
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3039
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3040

3041 3042
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3043

3044
        **bias** (Parameter or None): the learnable bias of this layer.
3045

3046 3047
    Returns:
        None
L
lujun 已提交
3048

3049
    Examples:
L
lujun 已提交
3050

3051
        .. code-block:: python
3052

3053 3054
          import paddle.fluid as fluid
          import numpy
3055

3056 3057 3058 3059
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3060
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3061
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3062 3063
    """

L
lujun 已提交
3064
    def __init__(self,
3065
                 feature_size,
L
lujun 已提交
3066 3067 3068 3069 3070 3071
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3072 3073 3074
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3075
        self._name = name
3076
        self._feature_size = feature_size
L
lujun 已提交
3077 3078 3079 3080 3081 3082
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3083 3084
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3085
        if self._bias_attr:
3086
            self.bias = self.create_parameter(
L
lujun 已提交
3087 3088 3089 3090
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3091
        self.weight = self.create_parameter(
L
lujun 已提交
3092 3093 3094 3095 3096 3097
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3098 3099
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3111
                'Filter': self.weight
L
lujun 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3121
                        'Y': [self.bias]},
L
lujun 已提交
3122 3123 3124 3125 3126
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573


class MSELoss(layers.Layer):
    """
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    where `input` and `label` are `float32` tensors of same shape.

    Parameters:
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = fluid.dygraph.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not in_dygraph_mode():
            check_variable_and_dtype(input, 'input', ['float32'], 'MSELoss')
            check_variable_and_dtype(label, 'label', ['float32'], 'MSELoss')

        square_out = square(F.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(F, reduce_op)(square_out)


class L1Loss(layers.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
    The L1Loss layer calculates the L1 Loss of input predictions and target 
    labels as follows.

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
    .. math::
        Out = |input - label|
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
    .. math::
        Out = MEAN(|input - label|)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
    .. math::
        Out = SUM(|input - label|)

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions.
    If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as input.
    If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
    Returns:
        A callable object of L1Loss.
    Examples:
        .. code-block:: python
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            l1_loss = fluid.dygraph.L1Loss(reduction='mean')
            output = l1_loss(input,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.2], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                l1_loss = fluid.dygraph.L1Loss(reduction='mean')
                output = l1_loss(input,label)
                print(output.numpy())  # [0.2]
    """

    def __init__(self, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
        check_variable_and_dtype(
            label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

        unreduced = F.elementwise_sub(input, label, act='abs')

        if self.reduction == 'sum':
            return F.reduce_sum(unreduced)
        elif self.reduction == 'mean':
            return F.reduce_mean(unreduced)
        else:
            return unreduced


class BCELoss(layers.Layer):
    """
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:

    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

    Parameters:
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

    Returns: 
        A callable object of BCELoss.

    Examples:
        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = fluid.dygraph.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'bce_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, Variable):
                w = self.weight
                out = F.elementwise_mul(out, w, axis=-1)
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return F.reduce_sum(out)
        elif self.reduction == 'mean':
            return F.reduce_mean(out)
        else:
            return out


class NLLLoss(layers.Layer):
    """
    This op accepts input and target label and returns negative log likelihood 
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
    each classes. It hs to be a Tensor of size either (batch_size, C) or 
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
        input (Variable): Input tensor, the data type is float32, float64. 
        label (Variable): Label tensor, the data type is int64_t.
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a Tensor of size `C`. Otherwise,
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.

    Returns:
        The tensor variable storing the nll_loss.

    Return type: Variable.
    
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.fluid as fluid
            import numpy as np

            input_np = np.random.random(size=(10, 10)).astype(np.float32)
            label_np = np.random.randint(0, 10, size=(10,)).astype(np.int64)
            prog = fluid.Program()
            startup_prog = fluid.Program()
            place = fluid.CPUPlace()
            with fluid.program_guard(prog, startup_prog):
                input = fluid.data(name='input', shape=[10, 10], dtype='float32')
                label = fluid.data(name='label', shape=[10], dtype='int64')
                nll_loss = fluid.dygraph.NLLLoss()
                res = nll_loss(input, label)

                exe = fluid.Executor(place)
                static_result = exe.run(
                    prog,
                    feed={"input": input_np,
                          "label": label_np},
                    fetch_list=[res])
            print(static_result)
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_np)
                label = dg.to_variable(label_np)
                output = nll_loss(input, label)
                print(output.numpy())
    """

    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
        super(NLLLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.ignore_index = ignore_index

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'nll_loss')
        check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss')

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % self.reduction)

        x_shape = list(input.shape)
        n = x_shape[0]
        c = x_shape[1]
        x_dims = len(x_shape)
        if x_dims < 2:
            raise ValueError('Expected 2 or more dimensions (got {})'.format(
                x_dims))
        if x_dims != 2 and x_dims != 4:
            input = F.reshape(input, shape=[n, c, 1, -1])
            label = F.reshape(label, shape=[n, 1, -1])
            out_shape = [n] + x_shape[2:]

        inputs = {'X': input, 'Label': label}
        attrs = {'reduction': self.reduction, 'ignore_index': self.ignore_index}

        if self.weight is not None:
            if isinstance(self.weight, Variable):
                inputs['Weight'] = self.weight

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        total_weight = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        outputs = {'Out': out, 'Total_weight': total_weight}

        self._helper.append_op(
            type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
        if x_dims != 2 and x_dims != 4 and self.reduction == 'none':
            out = F.reshape(out, shape=out_shape)

        return out