convolution_kernel.h 5.6 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/api/lib/utils/storage.h"
Z
zhangkaihuo 已提交
18 19 20 21 22
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"

namespace phi {
23 24 25 26 27 28 29 30 31 32 33 34

template <typename T, typename Context>
DenseTensor Empty(const Context& dev_ctx) {
  phi::DenseTensor dense_out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      {paddle::experimental::CppTypeToDataType<T>::Type(),
       {-1},
       DataLayout::NCHW});
  return dense_out;
}

Z
zhangkaihuo 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
namespace sparse {

struct Dims4D {
  int dims[4];
  Dims4D(const int batch, const int x, const int y, const int z) {
    dims[0] = batch;
    dims[1] = z;
    dims[2] = y;
    dims[3] = x;
  }
  HOSTDEVICE const int& operator[](int i) const { return dims[i]; }
};

// Judge whether the current position x is in (lower, upper)
inline HOSTDEVICE bool Check(const int& x,
                             const int& kx,
                             const int& pad,
                             const int& stride,
                             const int dilation,
                             const int kdim,
                             const int xdim) {
  const int lower = x - dilation * kx + pad;
  const int uper = x + (kdim - kx - 1) * dilation - pad;
  return (lower >= 0 && lower % stride == 0 && uper < xdim);
}

// Check whether the current position(x, y, z) is legal:
// Judge the minimum and maximum values at each latitude
inline HOSTDEVICE bool Check(const Dims4D& dims,
                             const Dims4D& kernel_dims,
                             const Dims4D& paddings,
                             const Dims4D& dilations,
                             const Dims4D& strides,
                             const int x,
                             const int y,
                             const int z,
                             const int kx,
                             const int ky,
                             const int kz) {
  bool x_valid = Check(
      x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]);
  bool y_valid = Check(
      y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]);
  bool z_valid = Check(
      z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]);
  return (x_valid && y_valid && z_valid);
}

template <typename Dim>
inline HOSTDEVICE int PointToIndex(const int& batch,
                                   const int& x,
                                   const int& y,
                                   const int& z,
                                   const Dim& dims) {
  return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] +
         y * dims[3] + x;
}

template <typename Dim>
inline HOSTDEVICE void IndexToPoint(
    const int index, const Dim& dims, int* batch, int* x, int* y, int* z) {
  int n = index;
  *x = n % dims[3];
  n /= dims[3];
  *y = n % dims[2];
  n /= dims[2];
  *z = n % dims[1];
  n /= dims[1];
  *batch = n;
}

inline void GetOutShape(const DDim& x_dims,
                        const DDim& kernel_dims,
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        DDim* out_dims) {
  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
  PADDLE_ENFORCE_EQ(kernel_dims.size(),
                    5,
                    phi::errors::InvalidArgument(
                        "the shape of kernel should be (D, H, W, C, OC)"));

  // infer out shape
  (*out_dims)[0] = x_dims[0];
  (*out_dims)[4] = kernel_dims[4];
  for (int i = 1; i < 4; i++) {
    (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
                      dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) /
                         strides[i - 1] +
                     1;
  }
}

template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const DenseTensor& kernel,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const int groups,
                  SparseCooTensor* out,
                  DenseTensor* rulebook);

template <typename T, typename Context>
SparseCooTensor Conv3d(const Context& dev_ctx,
                       const SparseCooTensor& x,
                       const DenseTensor kernel,
                       const std::vector<int>& paddings,
                       const std::vector<int>& dilations,
                       const std::vector<int>& strides,
                       const int groups,
                       DenseTensor* rulebook) {
  DenseTensor indices = phi::Empty<T, Context>(dev_ctx);
  DenseTensor values = phi::Empty<T, Context>(dev_ctx);
  SparseCooTensor coo(indices, values, x.dims());
  Conv3dKernel<T, Context>(
      dev_ctx, x, kernel, paddings, dilations, strides, groups, &coo, rulebook);
  return coo;
}

}  // namespace sparse
}  // namespace phi