fleet_base.py 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
import numpy as np
21
from paddle.fluid.framework import dygraph_only
22
from paddle.fluid import compiler
23
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
24
from .strategy_compiler import StrategyCompiler
25
from .distributed_strategy import DistributedStrategy
26 27
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from . import topology as tp
31
from .topology import ParallelMode
32
from ..meta_parallel import TensorParallel, model_parallel_random_seed
33
from ..meta_parallel import PipelineParallel
34
from ..meta_optimizers import HybridParallelOptimizer
35
from ..meta_optimizers import HybridParallelGradScaler
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


68
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
69
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
70 71


72 73 74
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
75
    Please reference the https://github.com/PaddlePaddle/FleetX for details
76 77 78 79 80


    Returns:
        Fleet: A Fleet instance

81
    Example for collective training:
1
123malin 已提交
82

83 84
        .. code-block:: python

1
123malin 已提交
85 86
            import paddle
            paddle.enable_static()
87
            import paddle.distributed.fleet as fleet
88 89 90

            fleet.init(is_collective=True)

91 92 93
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94 95 96 97 98 99 100 101

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
102 103
            import paddle
            paddle.enable_static()
104 105
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
106
            fleet.init(strategy=strategy)
107

108
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
109
            optimizer = fleet.distributed_optimizer(optimizer)
110

111 112
            if fleet.is_first_worker():
                print("this is first worker")
113

114 115
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
116

117 118 119
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
120

121 122
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
123

124 125 126
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
127 128


129 130 131
    """

    def __init__(self):
132
        self._role_maker = None
133
        self.strategy_compiler = None
134
        self._is_collective = False
135
        self._runtime_handle = None
D
Dong Daxiang 已提交
136 137
        self._util = None
        self._context = {}
138

139
    def init(self, role_maker=None, is_collective=False, strategy=None):
140 141 142
        """
        Initialize role_maker in Fleet.

143 144 145 146 147 148 149 150 151 152 153
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
154 155 156 157
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
180
                role = fleet.PaddleCloudRoleMaker()
181
                fleet.init(role)
182

183 184 185 186 187 188
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
189
                fleet.init(strategy=strategy)
190

191
        """
S
ShenLiang 已提交
192 193 194
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
195 196

        if role_maker is None:
197 198 199 200 201 202
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
203 204
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
205
        else:
206 207
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
208
                self._is_collective = role_maker._is_collective
209 210 211 212
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
213
        self._role_maker._generate_role()
214

215 216 217
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

218
        self.strategy_compiler = StrategyCompiler()
219 220 221 222 223 224 225 226 227

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

228
        if paddle.fluid.framework.in_dygraph_mode():
229
            if self.worker_num() == 1:
230 231 232
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
233
                return
234 235 236 237
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
238 239 240 241 242 243 244 245 246
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
247
                paddle.distributed.init_parallel_env()
248

249 250 251 252 253 254 255
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )
W
WangXi 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

            # hybrid group
            if use_sharding is False: return

            sharding_configs = self._user_defined_strategy.sharding_configs
            mp_degree = int(sharding_configs['mp_degree'])

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
            hybrid_group_names=["data", "pipe", "model"],
            dims=[self.dp_degree, self.pp_degree, self.mp_degree])

        self._hcg = tp.HybridCommunicateGroup(self._topology)

317 318 319 320 321 322 323 324
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

325 326 327 328 329 330 331 332
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

333 334 335 336 337 338 339
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
340

341 342 343 344 345 346 347 348
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

349
        """
350
        return self._role_maker._is_first_worker()
351 352 353 354 355 356 357

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
358 359 360 361

        Examples:

            .. code-block:: python
1
123malin 已提交
362

363 364 365 366
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

367
        """
368
        return self._role_maker._worker_index()
369 370 371 372 373 374 375

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
376

377
        Examples:
1
123malin 已提交
378

379 380 381 382 383 384
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

385
        """
386
        return self._role_maker._worker_num()
387

388 389 390 391 392 393 394 395 396 397 398 399
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

400 401 402 403 404 405 406
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
407 408

        Examples:
1
123malin 已提交
409

410 411 412 413 414 415
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

416
        """
417
        return self._role_maker._is_worker()
418 419 420

    def worker_endpoints(self, to_string=False):
        """
421
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
422 423 424

        Returns:
            list/string: server endpoints
425 426

        Examples:
1
123malin 已提交
427

428 429 430 431 432 433
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

434 435
        """
        if to_string:
436
            return ",".join(self._role_maker._get_trainer_endpoints())
437
        else:
438
            return self._role_maker._get_trainer_endpoints()
439 440 441 442 443 444 445

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
446 447

        Examples:
1
123malin 已提交
448

449
            .. code-block:: python
1
123malin 已提交
450 451 452 453

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
454
        """
455
        return len(self._role_maker._get_pserver_endpoints())
456 457 458 459 460 461 462

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
463 464

        Examples:
1
123malin 已提交
465

466 467 468 469 470 471
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

472
        """
473
        return self._role_maker._server_index()
474 475 476 477 478 479 480

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
481 482

        Examples:
1
123malin 已提交
483

484 485 486 487 488 489
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

490
        """
491

492
        if to_string:
493
            return ",".join(self._role_maker._get_pserver_endpoints())
494
        else:
495
            return self._role_maker._get_pserver_endpoints()
496 497 498 499 500 501 502 503

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
504 505 506 507

        Examples:

            .. code-block:: python
1
123malin 已提交
508

509 510 511 512
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

513
        """
514
        return self._role_maker._is_server(
515
        ) or self._role_maker._is_heter_worker()
516 517 518

    def barrier_worker(self):
        """
519 520 521 522
        barrier all workers

        Returns:
            None
523
        """
524
        self._role_maker._barrier("worker")
525

526
    @is_non_distributed_check
527
    @inited_runtime_handler
528 529
    def init_worker(self):
        """
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

548 549 550
        """
        self._runtime_handle._init_worker()

551
    @is_non_distributed_check
552
    @inited_runtime_handler
553
    def init_server(self, *args, **kwargs):
554
        """
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

574
        """
575
        self._runtime_handle._init_server(*args, **kwargs)
576

T
Thunderbrook 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

600
    @is_non_distributed_check
601
    @inited_runtime_handler
602 603
    def run_server(self):
        """
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

622 623 624
        """
        self._runtime_handle._run_server()

625
    @is_non_distributed_check
626
    @inited_runtime_handler
627 628
    def stop_worker(self):
        """
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

646 647 648
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

692 693 694 695 696 697
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
698 699
                             export_for_deployment=True,
                             mode=0):
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
719 720 721
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
722

723 724
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
725
            export_for_deployment, mode)
726

727
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
728 729
        """

1
123malin 已提交
730
        saves all persistable tensors from :code:`main_program` to
731 732
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
733 734
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
735 736 737
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
738
            executor(Executor): The executor to run for saving persistable tensors.
739 740 741 742 743
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
744
            main_program(Program, optional): The program whose persistbale tensors will
745 746 747 748 749 750 751 752 753 754
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
755 756
                import paddle
                paddle.enable_static()
757 758 759 760 761 762 763
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
764 765
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
766 767

        """
T
tangwei12 已提交
768 769 770
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
771

772 773
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
774

775 776 777
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

778
    def distributed_optimizer(self, optimizer, strategy=None):
779
        """
780 781 782 783 784 785 786
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
787 788 789 790 791
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
792

793
        Returns:
794
            Fleet: instance of fleet.
795 796

        Examples:
797

798
            .. code-block:: python
799

1
123malin 已提交
800
                import paddle
801
                import paddle.distributed.fleet as fleet
1
123malin 已提交
802
                fleet.init(is_collective=True)
803 804 805 806
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

807 808
        """
        self.user_defined_optimizer = optimizer
809

810
        if strategy is not None:
T
tangwei12 已提交
811 812 813 814 815 816 817
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
818
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
819 820

        self._context = {}
S
ShenLiang 已提交
821 822

        if paddle.fluid.framework.in_dygraph_mode():
823 824 825 826 827
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
828 829
        return self

830
    @dygraph_only
831
    def distributed_model(self, model):
832
        """
833 834 835 836 837 838 839
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
840 841

        Examples:
842

843 844
            .. code-block:: python

845 846 847 848 849 850 851 852 853
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
854

855 856
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
857

1
123malin 已提交
858
                # 1. initialize fleet environment
859 860
                fleet.init(is_collective=True)

1
123malin 已提交
861
                # 2. create layer & optimizer
862 863 864 865 866
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
867
                # 3. get data_parallel model using fleet
868 869 870
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
871
                # 4. run layer
872 873 874 875 876 877 878 879 880 881 882 883
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

884

885
        """
886 887 888 889 890 891 892 893 894 895 896 897
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
        if self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
898 899
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
900
                model, self._hcg, strategy=self._user_defined_strategy)
901 902 903
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
904
        return distributed_model
905 906 907 908 909

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
910
        (Only work in dygraph mode)
911 912 913 914 915 916 917

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

918 919 920 921 922
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
923

924
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
925
                a = paddle.to_tensor(value)
926

927 928
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
929

930 931 932
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
933 934 935 936 937 938 939 940
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
941
        (Only work in dygraph mode)
942 943 944 945

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

946 947
        Returns:
            None
948 949 950 951

        Examples:
            .. code-block:: python

952 953 954
                import numpy as np
                import paddle
                from paddle.distributed import fleet
955

956 957 958
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
959
                a = paddle.to_tensor(value)
960

961 962
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
963

964 965 966
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
967 968 969
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
970 971 972 973 974 975 976 977
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
978
        (Only work in dygraph mode)
979

980 981 982
        Args:
            value (float|Tensor): the value of learning rate

983 984
        Returns: 
            None 
985 986 987 988

        Examples:
            .. code-block:: python

989 990 991
                import numpy as np
                import paddle
                from paddle.distributed import fleet
992

993
                fleet.init(is_collective=True)
994

995
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
996
                a = paddle.to_tensor(value)
997

998 999
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
1015 1016 1017 1018 1019 1020 1021 1022
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
1023
        (Only work in dygraph mode)
1024 1025 1026 1027 1028

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
1029

1030 1031
            .. code-block:: python

1032 1033 1034 1035 1036
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1037

1038
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1039
                a = paddle.to_tensor(value)
1040

1041 1042
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1043

1044 1045
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1046

1047 1048
                lr = adam.get_lr()
                print(lr) # 0.01
1049 1050 1051 1052 1053 1054 1055 1056
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1057
        (Only work in dygraph mode)
1058

1059 1060
        Returns:
            None
1061 1062

        Examples:
1
123malin 已提交
1063

1064 1065
            .. code-block:: python

1066 1067 1068
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1069

1070 1071 1072 1073 1074
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1075

1076 1077
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1078

1
123malin 已提交
1079
                # 1. initialize fleet environment
1080 1081
                fleet.init(is_collective=True)

1
123malin 已提交
1082
                # 2. create layer & optimizer
1083 1084 1085 1086 1087
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1088
                # 3. get data_parallel model using fleet
1089 1090 1091
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1092
                # 4. run layer
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1113 1114
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1115

1116 1117
        Returns: 
            None
1118 1119

        Examples:
1
123malin 已提交
1120

1121 1122
            .. code-block:: python

1123 1124 1125
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1126

1127 1128 1129 1130 1131
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1132

1133 1134
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1135

1
123malin 已提交
1136
                # 1. initialize fleet environment
1137 1138
                fleet.init(is_collective=True)

1
123malin 已提交
1139
                # 2. create layer & optimizer
1140 1141 1142 1143 1144
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1145
                # 3. get data_parallel model using fleet
1146 1147 1148
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1149
                # 4. run layer
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1183 1184
        """Return the real-time loss scaling factor.
        """
1185 1186 1187
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1248
        amp_optimizer = self._get_amp_optimizer()
1249
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1250

D
Dong Daxiang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1278 1279 1280 1281 1282 1283 1284 1285 1286
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1287
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1288 1289 1290
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1291
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1292 1293
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1294
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1295 1296 1297 1298
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1299
            by minimize and a list of (param, grad) tensor pairs, param is
1300
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1301 1302
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1303 1304 1305
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1306

1307
            .. code-block:: python
1308

1309
                import paddle
1
123malin 已提交
1310
                paddle.enable_static()
1311
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1323

1
123malin 已提交
1324
                fleet.init(is_collective=True)
1325 1326 1327 1328
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1329

1330
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1331 1332

        """
D
Dong Daxiang 已提交
1333 1334 1335
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1336 1337 1338
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1339
            self._context = context
1340 1341
            return target_opt.minimize(loss)

1342 1343
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1344 1345
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1346 1347
        if startup_program == None:
            self.origin_startup_program = \
1348 1349
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1350 1351 1352
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1353

1354 1355
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1356 1357 1358 1359 1360

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1361

D
Dong Daxiang 已提交
1362 1363 1364
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1365 1366 1367 1368 1369 1370

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1371
        if copy_user_defined_strategy._is_strict_auto():
1372 1373
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1374
                opt._enable_strategy(copy_user_defined_strategy, context)
1375

1376 1377
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1378
        can_not_apply_optimizer_list = []
1379 1380 1381 1382
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1383
                                copy_user_defined_strategy)
1384 1385
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1386
            elif opt._can_apply() and opt._is_graph_out():
1387
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1388 1389
            else:
                can_not_apply_optimizer_list.append(opt)
1390
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1391
        meta_optimizer, graph_optimizer = \
1392 1393
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1394
                copy_user_defined_strategy, valid_optimizer_list,
1395
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1396

D
Dong Daxiang 已提交
1397
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1398 1399 1400
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1401

1402 1403 1404 1405 1406 1407
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1408
        self._context = context
1409

D
Dong Daxiang 已提交
1410
        self.valid_strategy = valid_strategy
1411
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1412

1413 1414
        optimize_ops = []
        params_grads = []
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1425
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1426

1427 1428
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1429
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1430

1431
            default_program = paddle.static.default_main_program()
1432 1433 1434 1435

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1436 1437
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1438
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1439

1440 1441
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1442

1443
        if graph_optimizer:
D
Dong Daxiang 已提交
1444
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1445
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1446 1447 1448 1449
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1450 1451 1452
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1453
        if self._runtime_handle is None:
1454
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1455

1456 1457
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1458 1459

        return optimize_ops, params_grads
1460 1461 1462 1463

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)