test_slice_op.py 31.3 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
W
whs 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
25
from paddle.tensor.manipulation import tensor_array_to_tensor
W
whs 已提交
26

27 28
paddle.enable_static()

W
whs 已提交
29

30 31
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
32 33 34 35 36 37 38 39 40
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
41
            'ends': self.ends,
42
            'infer_flags': self.infer_flags,
W
whs 已提交
43 44 45
        }

    def config(self):
46
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
47 48 49
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
50
        self.infer_flags = [1, 1, 1]
W
whs 已提交
51 52 53 54 55
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

56 57 58
    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)

W
whs 已提交
59

60 61
class TestCase1(TestSliceOp):
    def config(self):
62
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
63 64 65 66 67 68 69 70 71
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
72
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
73 74 75 76 77 78 79
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


80 81 82 83 84 85 86 87 88 89 90
class TestSliceZerosShapeTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags,
91
            'use_mkldnn': True,
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        }

    def config(self):
        self.input = np.random.random([0, 0, 0]).astype("float32")
        self.starts = [1]
        self.ends = [2]
        self.axes = [0]
        self.infer_flags = []
        self.out = self.input[1:2]

    def test_check_output(self):
        self.check_output_with_place(paddle.CPUPlace())


106
# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
107 108 109 110 111 112 113 114 115 116
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
117
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
118 119 120 121
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
122
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
123 124 125 126
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
127
        self.infer_flags = [1, 1, 1]
H
Hongyu Liu 已提交
128 129 130 131 132 133 134 135 136
        self.out = self.input[1, 0:3, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


137 138
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
    def config(self):
139
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
140 141 142 143 144 145 146 147 148 149
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[1, 0, 2:4, :]


class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
    def config(self):
150
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
151 152 153 154 155 156 157 158 159 160
        self.starts = [-1, 0, 2]
        self.ends = [1000000, 1, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0, 1]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-1, 0, 2:4, :]


class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
    def config(self):
161
        self.input = np.random.random([3, 4, 5, 7]).astype("float64")
162 163 164 165 166 167 168 169 170 171
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
    def config(self):
172
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
173 174 175 176 177 178 179 180 181 182
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[:, :, :, -1]


class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
    def config(self):
183
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
184 185 186 187 188 189 190 191 192 193 194
        self.starts = [0, 1, 2, 3]
        self.ends = [1, 2, 3, 4]
        self.axes = [0, 1, 2, 3]
        self.decrease_axis = [0, 1, 2, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[0, 1, 2, 3:4]


# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
195 196 197
    def setUp(self):
        self.op_type = "slice"
        self.config()
198 199 200

        starts_tensor = []
        for index, ele in enumerate(self.starts):
201 202 203
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int64') * ele)
            )
204 205

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
206 207 208
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
209
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
210
            'ends': self.ends,
211
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
212 213 214
        }

    def config(self):
215
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
216
        self.starts = [1, 0, 2]
217
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
218
        self.axes = [0, 1, 2]
219 220 221 222
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
223 224 225 226 227 228 229 230

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


231 232 233
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
234 235 236
    def setUp(self):
        self.op_type = "slice"
        self.config()
237 238 239

        starts_tensor = []
        for index, ele in enumerate(self.starts):
240 241 242
            starts_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
243 244 245

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
246 247 248
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
249
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
250
            'ends': self.ends,
251
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
252 253 254 255
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
256
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
257 258
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
259
        self.axes = [0, 1, 2]
260 261 262 263 264
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
265 266 267 268 269 270 271 272

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


273
class TestSliceOp_decs_dim_5_starts_ListTensor(
274 275
    TestSliceOp_decs_dim_starts_ListTensor
):
276
    def config(self):
277
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
278 279 280 281 282 283 284 285 286 287 288 289 290
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
291 292 293
    def setUp(self):
        self.op_type = "slice"
        self.config()
294 295
        self.inputs = {
            'Input': self.input,
296
            "StartsTensor": np.array(self.starts, dtype="int32"),
297
        }
H
Hongyu Liu 已提交
298 299 300
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
301
            # 'starts': self.starts,
H
Hongyu Liu 已提交
302
            'ends': self.ends,
303
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
304 305 306 307
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
308
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
309 310 311 312 313 314
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
315 316 317 318 319 320 321 322

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


323 324 325
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
326 327 328
    def setUp(self):
        self.op_type = "slice"
        self.config()
329 330 331

        self.inputs = {
            'Input': self.input,
332
            "StartsTensor": np.array(self.starts, dtype="int64"),
333
            "EndsTensor": np.array(self.ends, dtype="int32"),
334
        }
H
Hongyu Liu 已提交
335 336 337
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
338 339
            # 'starts': self.starts,
            # 'ends': self.ends_infer,
340
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
341 342 343
        }

    def config(self):
344
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
345 346 347 348 349
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
350 351 352 353 354 355 356 357

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)


358 359 360 361 362 363 364 365
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {
            'Input': self.input,
366
            "StartsTensor": np.array(self.starts, dtype="int32"),
367
            "EndsTensor": np.array(self.ends, dtype="int32"),
368 369 370 371
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
372 373
            # 'starts': self.starts,
            # 'ends': self.ends,
374 375 376 377
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
378
    def config(self):
379
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
380 381
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
382
        self.axes = [0, 1, 2]
383 384 385 386 387 388 389 390 391
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
392 393


394 395 396 397 398 399 400 401 402
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
403 404 405
            ends_tensor.append(
                ("y" + str(index), np.ones((1)).astype('int32') * ele)
            )
406 407 408

        self.inputs = {
            'Input': self.input,
409
            "StartsTensor": np.array(self.starts, dtype="int32"),
410
            'EndsTensorList': ends_tensor,
411 412 413 414
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
415
            # 'starts': self.starts,
416
            'ends': self.ends_infer,
417
            'infer_flags': self.infer_flags,
418 419
        }

W
whs 已提交
420
    def config(self):
421
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
422 423 424 425 426 427 428 429 430 431 432 433 434
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
435 436


437
# Test CUDA float16
438 439 440
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
441 442 443 444 445 446 447 448 449 450
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
451
            'infer_flags': self.infer_flags,
452 453
        }

454 455 456 457 458 459 460
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
461
        self.infer_flags = [1, 1, 1]
462 463 464 465 466 467 468 469 470

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
471 472 473
            self.check_grad_with_place(
                place, ['Input'], 'Out', max_relative_error=0.006
            )
474 475


476 477 478
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
479 480 481 482 483 484 485 486 487 488
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
489
            'infer_flags': self.infer_flags,
490 491
        }

492 493
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
494
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
495 496 497 498
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
499
        self.infer_flags = [1]
500 501 502 503 504 505 506 507 508

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=1e-5)

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
509 510 511 512 513 514 515
            self.check_grad_with_place(
                place,
                ['Input'],
                'Out',
                max_relative_error=0.006,
                numeric_grad_delta=0.5,
            )
516 517


518 519 520 521 522 523 524 525 526 527
class TestBF16(OpTest):
    def setUp(self):
        self.op_type = "slice"
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
528
            'infer_flags': self.infer_flags,
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Input'], 'Out')


547
# Test python API
548
class TestSliceAPI(unittest.TestCase):
549
    def test_1(self):
550
        input = np.random.random([3, 4, 5, 6]).astype("float64")
551
        minus_1 = fluid.layers.fill_constant([1], "int32", -1)
552
        minus_3 = fluid.layers.fill_constant([1], "int64", -3)
G
GGBond8488 已提交
553 554
        starts = paddle.static.data(
            name='starts', shape=[1, 3], dtype="float32"
555
        )
G
GGBond8488 已提交
556 557 558 559
        starts.desc.set_need_check_feed(False)
        ends = paddle.static.data(name='ends', shape=[3], dtype="float32")
        ends.desc.set_need_check_feed(False)
        x = paddle.static.data(
560 561 562 563
            name="x",
            shape=[3, 4, 5, 6],
            dtype="float64",
        )
564

565 566 567
        # value_int64 is greater than 2147483647 which is the max of int32
        value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)

568 569 570 571 572 573 574 575 576
        out_1 = paddle.slice(
            x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1]
        )
        out_2 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1]
        )
        out_3 = paddle.slice(
            x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1]
        )
577
        out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
578 579 580 581 582 583 584 585 586 587 588

        out_5 = x[-3:3, 0:100, 2:-1]
        out_6 = x[minus_3:3, 0:100, :, 2:-1]
        out_7 = x[minus_1, 0:100, :, 2:minus_1]

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
            fluid.default_main_program(),
            feed={
                "x": input,
                'starts': np.array([-3, 0, 2]).astype("int32"),
589
                'ends': np.array([3, 100, -1]).astype("int32"),
590
            },
591 592
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7],
        )
593 594 595 596 597 598 599 600 601 602

        assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
        assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
        assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])


603 604 605 606 607 608 609
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
610 611 612 613 614 615
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts, dtype='int32'),
                ends=paddle.to_tensor(ends, dtype='int32'),
            )
616 617
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

618
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
619

W
WeiXin 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
634
            np.testing.assert_array_equal(y_paddle.numpy(), y_np)
W
WeiXin 已提交
635

636

H
hong 已提交
637 638 639
class TestSliceApiEager(unittest.TestCase):
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
W
Weilong Wu 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            a.stop_gradient = False
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            a_2 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts),
                ends=paddle.to_tensor(ends),
            )
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
            a_1.backward()
            grad_truth = paddle.zeros_like(a)
            grad_truth[-3:3, 0:2, 2:4] = 1
            np.testing.assert_array_equal(grad_truth, a.gradient())

            np.testing.assert_allclose(
                a_1.numpy(), a[-3:3, 0:2, 2:4], rtol=1e-05
            )
H
hong 已提交
662 663


664 665 666 667 668 669 670 671 672
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

673 674 675 676 677
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
678 679 680 681 682
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
        with fluid.program_guard(main_program):
            x = [
683 684
                fluid.data(name='x0', shape=self.shape, dtype="float32"),
                fluid.data(name='x1', shape=self.shape, dtype="float32"),
685
                fluid.data(name='x2', shape=self.shape, dtype="float32"),
686 687 688 689 690
            ]

            for each_x in x:
                each_x.stop_gradient = False

691
            arr = paddle.tensor.create_array(dtype="float32")
692
            for i in range(3):
693
                idx = paddle.tensor.array_length(arr)
694
                arr = paddle.tensor.array_write(x=x[i], i=idx, array=arr)
695 696 697 698 699

            if case_num == 1:
                self.sliced_arr = output = arr[0]

            elif case_num == 2:
700
                end = (
701
                    paddle.tensor.array_length(arr) - 1
702 703
                )  # dtype of end is int64
                self.sliced_arr = slice_arr = arr[self.start : end]
704
                output, _ = tensor_array_to_tensor(
705 706
                    slice_arr, axis=self.axis, use_stack=True
                )
707
            elif case_num == 3:
708 709 710 711
                value_int64 = fluid.layers.fill_constant(
                    [1], "int64", 2147483648
                )
                self.sliced_arr = slice_arr = arr[self.start : value_int64]
712
                output, _ = tensor_array_to_tensor(
713 714
                    slice_arr, axis=self.axis, use_stack=True
                )
715

716
            loss = paddle.sum(output)
717 718
            fluid.backward.append_backward(loss)
            g_vars = list(
719 720 721 722 723 724 725 726 727 728
                map(
                    main_program.global_block().var,
                    [each_x.name + "@GRAD" for each_x in x],
                )
            )
            self.out, self.g_x0, self.g_x1, self.g_x2 = self.exe.run(
                main_program,
                feed={'x0': self.data, 'x1': self.data, 'x2': self.data},
                fetch_list=[output] + g_vars,
            )
729 730 731 732 733 734 735

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
736 737 738 739
        np.testing.assert_array_equal(self.out, self.data)
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
740 741 742 743 744 745

    def test_case_2(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 2)

        self.assertTrue(
746 747
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
748
        self.assertEqual(self.sliced_arr.shape, self.shape)
749
        np.testing.assert_array_equal(
750 751
            self.out, np.stack([self.data, self.data], axis=self.axis)
        )
752 753 754
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
755

756 757 758 759 760
    def test_case_3(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 3)

        self.assertTrue(
761 762
            self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        )
763
        self.assertEqual(self.sliced_arr.shape, self.shape)
764
        np.testing.assert_array_equal(
765 766 767
            self.out,
            np.stack([self.data, self.data, self.data], axis=self.axis),
        )
768 769 770
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data))
771

772

773 774 775 776 777
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
778
            sliced = var[:, 10:, : var.shape[1]]  # var.shape[1] is 80L here
779 780
            self.assertEqual(sliced.shape, [2, 70, 80])

781
            sliced = var[:, var.shape[0] :, var.shape[0] : var.shape[1]]
782 783 784 785 786 787 788
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
789
                sliced = var[:, 1.1:, : var.shape[1]]
790 791 792 793 794 795 796 797 798 799 800 801

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


802 803 804 805 806 807 808
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
809
        self.assertEqual(out0.shape, (3, -1, 5))
810

811 812 813 814 815 816
    def test_axis_less_than_zero(self):
        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

817 818 819 820 821 822 823 824
            pp_slice = paddle.slice(
                x,
                [
                    100,
                ],
                [0],
                [1],
            )
825
            np_slice = x_arr[:, :, 0:1]
826
            np.testing.assert_array_equal(pp_slice, np_slice)
827

828
            pp_slice = paddle.slice(x, (-100,), [0], [1])
829
            np_slice = x_arr[0:1]
830
            np.testing.assert_array_equal(pp_slice, np_slice)
831 832 833 834 835

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
836 837
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
838
            ends = paddle.to_tensor(
839 840
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
841 842 843 844 845 846 847 848 849 850 851 852 853

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
class TestSliceOpError(unittest.TestCase):
    def test_dismatch_shape(self):
        with fluid.dygraph.guard():
            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[], ends=[])

            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[0], ends=[])

            # if shape match, pass
            array = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
            out = paddle.slice(x, axes=[0], starts=[0], ends=[0])
            self.assertEqual(out.numel(), 0)
            # self.assertEqual(out.shape)


876 877 878
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
879 880 881 882
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
W
Weilong Wu 已提交
883
            var = core.eager.Tensor(
884 885 886 887 888 889 890
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False,
            )
            sliced = var[:, 10:, : var.shape[1]]
891 892 893
            self.assertEqual(sliced.shape, [2, 70, 80])


894 895
class TestSliceDoubleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
896 897 898
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
899 900 901 902 903 904 905

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
906
        data = paddle.static.data('data', [4, 5, 6], dtype)
907
        data.persistable = True
908 909 910
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
911 912
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

913 914 915 916 917 918
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
919 920 921 922 923 924 925 926 927 928 929 930

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSliceTripleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
931 932 933
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
934 935 936 937 938 939 940

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
941
        data = paddle.static.data('data', [4, 5, 6], dtype)
942
        data.persistable = True
943 944 945
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
946 947
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

948 949 950 951 952 953
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
954 955 956 957 958 959 960 961 962 963

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
whs 已提交
964
if __name__ == '__main__':
H
hong 已提交
965
    paddle.enable_static()
W
whs 已提交
966
    unittest.main()