elementwise_kernel.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/elementwise_kernel.h"
#include "paddle/phi/kernels/xpu/elementwise.h"

#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
30 31 32 33 34 35 36 37 38 39
  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_floordiv<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
40 41 42 43 44 45 46 47 48
}

template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
49 50 51 52 53 54 55 56 57 58
  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_max<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
59 60 61 62 63 64 65 66 67
}

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
68 69 70 71 72 73 74 75 76 77
  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_min<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
78 79 80 81 82 83 84 85 86
}

template <typename T, typename Context>
void RemainderRawKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        int axis,
                        DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
87 88 89 90 91 92 93 94 95 96
  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_mod<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
97 98 99 100 101 102 103 104 105
}

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
106 107 108 109 110 111 112 113 114 115
  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_pow<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
}

}  // namespace phi

PD_REGISTER_KERNEL(floor_divide_raw,
                   XPU,
                   ALL_LAYOUT,
                   phi::FloorDivideRawKernel,
                   float,
                   phi::dtype::float16) {}
PD_REGISTER_KERNEL(maximum_raw,
                   XPU,
                   ALL_LAYOUT,
                   phi::MaximumRawKernel,
                   float,
                   phi::dtype::float16) {}
PD_REGISTER_KERNEL(minimum_raw,
                   XPU,
                   ALL_LAYOUT,
                   phi::MinimumRawKernel,
                   float,
                   phi::dtype::float16) {}
PD_REGISTER_KERNEL(remainder_raw,
                   XPU,
                   ALL_LAYOUT,
                   phi::RemainderRawKernel,
                   float,
                   phi::dtype::float16,
                   int32_t,
                   int64_t) {}
PD_REGISTER_KERNEL(elementwise_pow_raw,
                   XPU,
                   ALL_LAYOUT,
                   phi::ElementwisePowRawKernel,
                   float,
                   phi::dtype::float16) {}