elementwise_add_kernel.cc 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/elementwise_add_kernel.h"

17 18 19
#include <memory>
#include <string>

20 21
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
22 23 24
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/backends/xpu/xpu_header.h"
#include "paddle/phi/backends/xpu/xpu_info.h"
25 26
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/elementwise_kernel_impl.h"
27
#include "paddle/phi/kernels/xpu/elementwise.h"
28 29 30 31 32 33 34 35

namespace phi {

template <typename T, typename Context>
void GradAddXPUKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      DenseTensor* out) {
36 37
  using XPUType = typename XPUTypeTrait<T>::Type;

38 39 40 41
  dev_ctx.template Alloc<T>(out);
  auto x_shape = phi::vectorize<int>(x.dims());
  auto y_shape = phi::vectorize<int>(y.dims());
  int r = xpu::broadcast_add(dev_ctx.x_context(),
42 43 44
                             reinterpret_cast<const XPUType*>(x.data<T>()),
                             reinterpret_cast<const XPUType*>(y.data<T>()),
                             reinterpret_cast<XPUType*>(out->data<T>()),
45 46 47 48 49
                             x_shape,
                             y_shape);
  PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_add");
}

50 51 52 53 54 55 56
template <typename T, typename Context>
void AddRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  int axis,
                  DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
57 58 59 60 61 62 63 64 65 66 67

  auto f = [](xpu::Context* ctx,
              const XPUType* x,
              const XPUType* y,
              XPUType* z,
              const std::vector<int>& xshape,
              const std::vector<int>& yshape) {
    return xpu::broadcast_add<XPUType>(ctx, x, y, z, xshape, yshape);
  };

  XPUElementwise<T, XPUType>(dev_ctx, x, y, axis, out, f);
68 69
}

70 71
}  // namespace phi

72 73 74 75 76 77
PD_REGISTER_KERNEL(grad_add,
                   XPU,
                   ALL_LAYOUT,
                   phi::GradAddXPUKernel,
                   phi::dtype::float16,
                   float) {}
78 79
PD_REGISTER_KERNEL(
    add_raw, XPU, ALL_LAYOUT, phi::AddRawKernel, phi::dtype::float16, float) {}