nn.py 94.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Embedding',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
65
]
M
minqiyang 已提交
66 67


L
lujun 已提交
68
class Conv3D(layers.Layer):
69
    r"""
70 71 72 73
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
74
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
75
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
90
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

116
    Parameters:
117
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
118
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
119
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
120
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
121 122 123
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
124
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
125 126
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
127
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
128 129
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
130
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
131
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
132
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
133 134 135
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
136 137
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
138 139 140
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
141 142
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
143 144 145
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
146 147 148 149 150
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
151
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
152

D
DuYao 已提交
153 154 155 156
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
157

158
    Returns:
D
DuYao 已提交
159
        None.
160 161 162 163 164 165 166 167

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

168 169 170 171 172 173
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
174
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
175 176
              ret = conv3d(fluid.dygraph.base.to_variable(data))

177 178
    """

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
194
        assert param_attr is not False, "param_attr should not be False here."
195
        super().__init__()
196
        self._num_channels = num_channels
L
lujun 已提交
197 198 199
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
200
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
201 202
        self._act = act
        self._use_cudnn = use_cudnn
203 204 205 206
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
207
        self._dtype = dtype
208 209

        if self._groups is None:
210
            num_filter_channels = self._num_channels
L
lujun 已提交
211
        else:
212
            if self._num_channels % self._groups != 0:
L
lujun 已提交
213
                raise ValueError("num_channels must be divisible by groups.")
214
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
215

216 217
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
218 219

        def _get_default_param_initializer():
220 221 222 223 224 225 226
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
227 228
            return Normal(0.0, std, 0)

229
        self.weight = self.create_parameter(
230
            attr=self._param_attr,
L
lujun 已提交
231 232
            shape=filter_shape,
            dtype=self._dtype,
233 234
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
235

236 237 238 239 240 241
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
242 243 244

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
264

265
        if self.bias is not None:
266
            pre_act = self._helper.create_variable_for_type_inference(
267 268 269 270 271 272 273 274
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
275 276
        else:
            pre_act = pre_bias
L
lujun 已提交
277 278 279 280 281

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
282
    r"""
L
lujun 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
328 329 330 331 332 333 334 335
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

336 337
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
338 339
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
340 341 342 343 344
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
345 346
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
347

348
    Parameters:
349
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
350 351
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
352
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
353
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
354
            Otherwise, the filter will be a square.
D
DuYao 已提交
355 356 357 358 359 360 361 362 363 364
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
365 366 367
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
368 369
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
370
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
371
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
372
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
373 374 375 376
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
377 378
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
379 380
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
381 382
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
383 384 385
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
386 387 388 389 390
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
391
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
392
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
393

D
DuYao 已提交
394 395 396 397
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
398

L
lujun 已提交
399
    Returns:
D
DuYao 已提交
400
        None.
L
lujun 已提交
401 402 403 404 405 406 407 408

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

409 410 411 412 413 414
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
415
                    num_channels=3,
416 417 418 419 420
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
421 422
    """

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
438
        super().__init__()
L
lujun 已提交
439 440
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
441 442 443
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
444 445 446 447
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
448
        self._num_channels = num_channels
L
lujun 已提交
449 450 451 452 453 454
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
455
        self._dtype = dtype
L
lujun 已提交
456

457
        self._filter_size = utils.convert_to_list(
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
474 475 476

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
477 478 479 480 481 482 483 484 485 486 487 488 489 490
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
491 492 493

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
494 495 496 497 498 499 500 501
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
502 503 504 505 506 507 508
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
509
class Pool2D(layers.Layer):
510
    r"""
511

512 513 514 515 516
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
517 518
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

564
    Parameters:
565
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
566
            it must contain two integers, (pool_size_Height, pool_size_Width).
567
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
568
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
569 570
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
571
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
572
            the pool stride size will be a square of an int. Default: 1.
573
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
574
            If ``pool_padding`` is a tuple,
575
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
576 577 578 579 580 581 582
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
583 584
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
585
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
586
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
587 588

    Returns:
589
        None
590 591

    Raises:
592 593 594 595
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
596 597 598 599 600

    Examples:

        .. code-block:: python

L
lujun 已提交
601
          import paddle.fluid as fluid
602 603
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
604 605

          with fluid.dygraph.guard():
606
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
607
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
608 609 610
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
611
             pool2d_res = pool2d(to_variable(data))
612 613 614

    """

615 616 617 618 619 620 621 622 623 624 625 626
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
627 628
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
629 630 631
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
632 633
                str(pool_type),
            )
M
minqiyang 已提交
634 635 636 637

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
638 639
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
640 641 642 643

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

644
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
645

646 647 648
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
649 650
                "Attr(data_format): %s." % str(data_format)
            )
651

652
        super().__init__()
M
minqiyang 已提交
653 654 655

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
656 657 658
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
659 660 661 662 663
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
664
        self._data_format = data_format
M
minqiyang 已提交
665 666 667
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
668
        if _non_static_mode():
669
            if not self._use_mkldnn and in_dygraph_mode():
670
                input = input._use_gpudnn(self._use_cudnn)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
707
            return _legacy_C_ops.pool2d(input, *attrs)
708

709
        check_variable_and_dtype(
710 711 712 713 714
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
715

716 717 718 719 720 721 722 723
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
724
            "use_mkldnn": self._use_mkldnn,
725
            "exclusive": self._exclusive,
726
            "data_format": self._data_format,
727 728 729
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
730 731
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

732 733 734 735 736 737
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
738
        return pool_out
M
minqiyang 已提交
739 740


S
songyouwei 已提交
741 742
class Linear(layers.Layer):
    """
743

S
songyouwei 已提交
744 745 746 747 748 749 750 751
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

752
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

793 794 795 796 797 798 799 800 801
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
802
        super().__init__()
S
songyouwei 已提交
803 804
        self._act = act
        self._dtype = dtype
805 806 807 808 809 810 811 812 813
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
814

815
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
816

S
songyouwei 已提交
817
    def forward(self, input):
J
Jiabin Yang 已提交
818
        if _non_static_mode():
819
            pre_bias = _varbase_creator(dtype=input.dtype)
820 821 822 823 824 825 826 827 828 829 830 831 832
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
833
            pre_act = dygraph_utils._append_bias_in_dygraph(
834 835 836
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
837 838
                use_mkldnn=self._use_mkldnn,
            )
839

840
            return dygraph_utils._append_activation_in_dygraph(
841 842
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
843

844 845 846
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
847

848
        attrs = {
S
songyouwei 已提交
849 850 851
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
852
            "use_mkldnn": self._use_mkldnn,
853 854
        }
        inputs = {"X": [input], "Y": [self.weight]}
855

S
songyouwei 已提交
856
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
857 858 859
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
860
        if self.bias is not None:
S
songyouwei 已提交
861
            pre_activation = self._helper.create_variable_for_type_inference(
862 863 864 865 866 867 868 869 870 871 872
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
873 874 875 876 877
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
878
class BatchNorm(layers.Layer):
879
    r"""
880

881 882
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
883
    It implements the function of the Batch Normalization Layer and can be used
884 885
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
886 887 888 889
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

890
    When use_global_stats = False, the :math:`\mu_{\beta}`
891
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
892
    Calculated as follows:
893 894 895

    ..  math::

896 897 898 899
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
900

901 902
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
903 904 905

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
906 907 908 909 910 911
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
912

913
    The normalization function formula is as follows:
914

915 916
    ..  math::

917 918 919 920
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

921

922 923 924
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
925

926
    Parameters:
927
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
928
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
929 930 931
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
932 933 934
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
935 936 937
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
938
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
939 940 941
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
942 943 944 945 946 947
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
948 949
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
950
        use_global_stats(bool, optional): Whether to use global mean and
951 952 953
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
954 955 956 957
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
958 959

    Returns:
960
        None
961 962 963

    Examples:
        .. code-block:: python
L
lujun 已提交
964 965

          import paddle.fluid as fluid
966 967
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
968

969
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
970
          with fluid.dygraph.guard():
971
              x = to_variable(x)
972
              batch_norm = fluid.BatchNorm(10)
973
              hidden1 = batch_norm(x)
974 975
    """

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
994
        super().__init__()
995
        self._param_attr = param_attr
996
        self._bias_attr = bias_attr
997
        self._act = act
998
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
999

1000 1001 1002
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1003

1004 1005
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1006 1007 1008 1009 1010 1011
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1042
        self._mean.stop_gradient = True
M
minqiyang 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1054
        self._variance.stop_gradient = True
M
minqiyang 已提交
1055 1056

        self._in_place = in_place
1057
        self._data_layout = data_layout
M
minqiyang 已提交
1058 1059 1060
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1061
        self._fuse_with_relu = False
M
minqiyang 已提交
1062
        self._use_global_stats = use_global_stats
1063
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1064 1065 1066 1067 1068 1069 1070

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1071

J
Jiabin Yang 已提交
1072
        if _non_static_mode():
H
hong 已提交
1073
            if in_dygraph_mode():
1074
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1075 1076 1077
                    input,
                    self._mean,
                    self._variance,
1078 1079 1080
                    self.weight,
                    self.bias,
                    not self.training,
1081 1082 1083 1084 1085 1086
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    self._use_global_stats,
                    self._trainable_statistics,
                )
1087
                return dygraph_utils._append_activation_in_dygraph(
1088 1089
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1090 1091

            elif _in_legacy_dygraph():
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1110
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1121

1122
            return dygraph_utils._append_activation_in_dygraph(
1123 1124
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1125

1126 1127 1128
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1129

1130 1131 1132 1133 1134 1135 1136
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1137 1138
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1139
        }
M
minqiyang 已提交
1140

1141 1142 1143 1144 1145
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1146
            "Variance": [self._variance],
1147 1148
        }

1149
        saved_mean = self._helper.create_variable_for_type_inference(
1150 1151
            dtype=self._dtype, stop_gradient=True
        )
1152
        saved_variance = self._helper.create_variable_for_type_inference(
1153 1154
            dtype=self._dtype, stop_gradient=True
        )
1155
        reserve_space = self._helper.create_variable_for_type_inference(
1156 1157
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1158

1159 1160 1161 1162 1163
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1164 1165 1166 1167 1168 1169

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1170
            "SavedVariance": [saved_variance],
1171
        }
1172
        if reserve_space is not None:
1173
            outputs["ReserveSpace"] = [reserve_space]
1174

1175 1176 1177
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1178

L
lujun 已提交
1179
        # Currently, we don't support inplace in dygraph mode
1180
        return self._helper.append_activation(batch_norm_out, self._act)
1181 1182


1183
class Embedding(layers.Layer):
1184
    r"""
1185
    :alias_main: paddle.nn.Embedding
1186 1187
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1188

1189 1190
    **Embedding Layer**

Z
zhongpu 已提交
1191 1192 1193 1194 1195 1196
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1197 1198
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1199

1200
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1201 1202 1203 1204 1205 1206 1207
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1208 1209
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1210 1211 1212 1213 1214 1215 1216 1217
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1218

Z
zhongpu 已提交
1219 1220 1221 1222
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1223

1224
    Parameters:
L
lujun 已提交
1225 1226
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1227
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1228
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1229
            True because sparse update is faster. But some optimizer does not support sparse update,
1230
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1231 1232 1233 1234 1235
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1236
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1237 1238 1239 1240 1241 1242
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1243
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1244
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1245
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1246 1247 1248
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1249

Z
zhongpu 已提交
1250 1251
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1252

1253
    Returns:
Z
zhongpu 已提交
1254
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1255 1256

    Examples:
1257

1258 1259
        .. code-block:: python

L
lujun 已提交
1260 1261 1262 1263
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1264
          # example 1
1265 1266
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1267 1268
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1269
              emb = fluid.dygraph.Embedding(
1270 1271 1272
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1273
              static_rlt3 = emb(base.to_variable(inp_word))
1274
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1288
              static_rlt3 = emb(base.to_variable(inp_word))
1289 1290
    """

1291 1292 1293 1294 1295 1296 1297 1298 1299
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1300
        super().__init__()
1301 1302 1303
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1304 1305 1306 1307 1308 1309 1310
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1311 1312 1313

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1314
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1315 1316 1317
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1318 1319 1320 1321 1322 1323
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1324 1325

    def forward(self, input):
J
Jiabin Yang 已提交
1326
        if _non_static_mode():
1327
            return _legacy_C_ops.lookup_table_v2(
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1339

1340 1341 1342 1343 1344 1345
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1346 1347 1348 1349
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1350
            'padding_idx': self._padding_idx,
1351
        }
1352

1353
        out = self._helper.create_variable_for_type_inference(self._dtype)
1354 1355 1356 1357 1358 1359
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1360 1361

        return out
M
minqiyang 已提交
1362 1363


1364
class PRelu(layers.Layer):
1365
    r"""
1366 1367 1368 1369
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1370 1371 1372 1373 1374
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1375
    Parameters:
L
lujun 已提交
1376
        mode (str): The mode for weight sharing. It supports all, channel
1377 1378 1379
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1380 1381 1382
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1383
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1384 1385
          This argument is required when mode is "element".
          Default: None.
1386 1387
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1388
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1389

1390 1391
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1392

1393
    Returns:
1394
        None
1395 1396 1397 1398 1399

    Examples:

        .. code-block:: python

L
lujun 已提交
1400
          import paddle.fluid as fluid
1401
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1402 1403 1404 1405
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1406
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1418
                 input_shape=inp_np.shape,
L
lujun 已提交
1419
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1420
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1421

1422 1423
    """

1424 1425 1426 1427 1428 1429 1430 1431
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
1432
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
1433
        super().__init__(name_scope='prelu')
1434 1435
        self._mode = mode
        self._param_attr = param_attr
1436
        self._dtype = dtype
S
songyouwei 已提交
1437 1438 1439 1440
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
1441 1442 1443
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
1444
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
1445
            # And, input_shape is not required when mode is 'channel', so it is simplified.
1446
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
1447
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
1448
        elif mode == 'element':
1449
            assert isinstance(
1450 1451
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
1452 1453 1454
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
1455 1456 1457 1458 1459 1460 1461
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
1462 1463

    def forward(self, input):
1464 1465 1466
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

1467
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
1468
        out = self._helper.create_variable_for_type_inference(self._dtype)
1469 1470 1471 1472 1473 1474
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
1475 1476 1477 1478
        return out


class BilinearTensorProduct(layers.Layer):
1479
    r"""
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
1494
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
1495

1496
    Parameters:
1497 1498 1499 1500 1501
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
1502
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
1503
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
1504 1505
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
1506
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
1507
           If it is set to None, the bias is initialized zero. The default value is None.
1508
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1509

D
DuYao 已提交
1510 1511 1512 1513
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1514

1515
    Returns:
W
wanghuancoder 已提交
1516
       Tensor: A 2-D Tensor of shape [batch_size, size].
1517 1518 1519 1520

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
1530

1531 1532
    """

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
1544
        super().__init__()
1545 1546 1547 1548
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
1549 1550 1551
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
1552
        self._inputs = dict()
1553
        self._dtype = dtype
1554

1555
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
1556 1557 1558 1559 1560 1561
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
1562
        bias_size = [1, self._output_dim]
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
1575
    def forward(self, x, y):
1576 1577 1578 1579 1580 1581
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
1582
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
1583
        if self.bias is not None:
1584
            self._inputs["Bias"] = self.bias
1585
        if self._name is not None:
1586 1587 1588 1589 1590
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
1591
        else:
1592 1593 1594 1595 1596 1597 1598 1599
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
1600 1601

        # add activation
1602
        return self._helper.append_activation(out, act=self._act)
1603 1604 1605


class Conv2DTranspose(layers.Layer):
1606
    r"""
1607 1608
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
1609
    The convolution2D transpose layer calculates the output based on the input,
1610 1611 1612
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
1613 1614
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
1615 1616
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
1617 1618 1619
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
1620 1621
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
1622 1623 1624 1625 1626 1627 1628 1629 1630

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

1631 1632
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
1633
    * :math:`\\ast`: Convolution operation.
1634
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

1659
    Parameters:
1660
        num_channels(int): The number of channels in the input image.
1661
        num_filters(int): The number of the filter. It is as same as the output
1662
            feature map.
1663 1664 1665
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
1666
        output_size(int or tuple, optional): The output image size. If output size is a
1667 1668 1669
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
1670
            should follow the formula above. Default: None.
1671
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
1672
            contain two integers, (padding_H, padding_W). Otherwise, the
1673 1674
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
1675
            contain two integers, (stride_H, stride_W). Otherwise, the
1676 1677
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
1678
            contain two integers, (dilation_H, dilation_W). Otherwise, the
1679
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
1680
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1681 1682 1683 1684
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1685 1686
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1687 1688 1689
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
1690
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
1691 1692 1693 1694
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1695
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
1696
            library is installed. Default: True.
1697
        act (str, optional): Activation type, if it is set to None, activation is not appended.
1698
            Default: None.
1699
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1700

1701 1702
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
1703

1704
        **bias** (Parameter or None): the learnable bias of this layer.
1705

1706 1707
    Returns:
        None
1708 1709 1710 1711

    Examples:
       .. code-block:: python

1712
          import paddle.fluid as fluid
1713
          import numpy as np
1714 1715

          with fluid.dygraph.guard():
1716
              data = np.random.random((3, 32, 32, 5)).astype('float32')
1717
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
1718
                    num_channels=32, num_filters=2, filter_size=3)
1719 1720
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

1721 1722
    """

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
1739
        super().__init__()
1740 1741 1742
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
1743 1744
        self._param_attr = param_attr
        self._bias_attr = bias_attr
1745
        self._act = act
1746
        self._groups = groups
1747
        self._num_channels = num_channels
1748 1749 1750 1751 1752 1753 1754
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
1755
        self._dtype = dtype
1756

1757 1758 1759 1760 1761
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
1762
            self._op_type = 'depthwise_conv2d_transpose'
1763 1764
        else:
            self._op_type = 'conv2d_transpose'
1765 1766 1767 1768 1769

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

1770
        self._filter_size = utils.convert_to_list(
1771 1772
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
1773 1774 1775

        if self._output_size is None:
            self._output_size = []
1776 1777 1778
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
1779 1780
                    self._output_size
                )
1781 1782
            else:
                self._output_size = utils.convert_to_list(
1783 1784
                    self._output_size, 2, 'output_size'
                )
1785
        elif isinstance(self._output_size, int):
1786 1787 1788
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
1789
        elif isinstance(self._output_size, Variable):
1790 1791 1792 1793 1794 1795
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
1796
            if len(self._output_size.shape) == 1 and (
1797 1798 1799
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
1800 1801 1802 1803
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
1804 1805
                    "output_size must contain one or two integers."
                )
1806
        else:
1807
            raise ValueError("output_size should be list or int or Tensor")
1808 1809
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
1810 1811 1812 1813
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
1814

1815 1816 1817
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
1818

1819 1820 1821 1822 1823 1824
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
1825

1826
    def forward(self, input):
J
Jiabin Yang 已提交
1827
        if _non_static_mode():
1828
            op = getattr(_legacy_C_ops, self._op_type)
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
1845
            pre_bias = out
1846
            pre_act = dygraph_utils._append_bias_in_dygraph(
1847 1848 1849 1850 1851
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
1852

1853 1854 1855
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
1856

1857 1858 1859 1860 1861 1862 1863
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
1864
            'use_cudnn': self._use_cudnn,
1865 1866
        }

1867
        pre_bias = self._helper.create_variable_for_type_inference(
1868 1869 1870 1871 1872 1873 1874 1875
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
1876

1877
        if self.bias is not None:
1878
            pre_act = self._helper.create_variable_for_type_inference(
1879 1880 1881 1882 1883 1884 1885 1886
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
1887 1888 1889 1890
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
1891 1892 1893 1894 1895 1896 1897 1898 1899
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

1900
    Parameters:
L
lujun 已提交
1901
        name_scope(str): The name of this class.
1902
        num_filters (int): number of filters.
L
lujun 已提交
1903 1904 1905
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

1918 1919 1920 1921
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

1922 1923 1924 1925
    Returns:
        Variable: output of sequence_conv
    """

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
1939
        ), "SequenceConv is not supported by dynamic graph mode yet!"
1940
        super().__init__(name_scope)
1941 1942 1943 1944 1945 1946
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
1947
        self._act = act
1948

1949
    def _build_once(self, input):
1950 1951
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
1952 1953 1954
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
1955

1956 1957 1958 1959 1960 1961
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
1962

1963 1964
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
1978

1979
        if self.bias is not None:
1980
            pre_act = self._helper.create_variable_for_type_inference(
1981 1982 1983 1984 1985 1986 1987 1988
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
1989 1990 1991 1992
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
1993 1994 1995


class RowConv(layers.Layer):
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2014
    Parameters:
L
lujun 已提交
2015
        name_scope(str): The name of this class.
2016 2017 2018
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2019 2020
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2021

2022 2023 2024
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2025
    Returns:
L
lujun 已提交
2026 2027
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

2043 2044 2045 2046 2047
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
2048
        ), "RowConv is not supported by dynamic graph mode yet!"
2049
        super().__init__(name_scope)
L
lujun 已提交
2050 2051 2052 2053
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2054
    def _build_once(self, input):
L
lujun 已提交
2055 2056
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2057 2058 2059 2060 2061 2062
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
2063 2064 2065

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2066 2067 2068 2069 2070
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
2071 2072 2073 2074 2075
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2076
    :alias_main: paddle.nn.GroupNorm
2077 2078
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
2079

2080 2081 2082 2083 2084 2085
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2086
        channels(int): The number of channels of input.
2087 2088 2089 2090 2091 2092 2093 2094 2095
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2096
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2110
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2111
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2112 2113 2114

    """

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
2126
        super().__init__()
L
lujun 已提交
2127 2128 2129
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2130
        self._channels = channels
L
lujun 已提交
2131 2132
        self._groups = groups
        self._act = act
2133
        self._dtype = dtype
L
lujun 已提交
2134 2135 2136
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2137
        param_shape = [self._channels]
L
lujun 已提交
2138

2139 2140 2141 2142 2143 2144
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
2145

2146 2147 2148 2149 2150 2151
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
2152 2153

    def forward(self, input):
2154
        mean_out = self._helper.create_variable_for_type_inference(
2155 2156
            dtype=self._dtype, stop_gradient=True
        )
2157
        variance_out = self._helper.create_variable_for_type_inference(
2158 2159
            dtype=self._dtype, stop_gradient=True
        )
2160
        if in_dygraph_mode():
2161 2162 2163 2164 2165 2166 2167 2168
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
2169

2170 2171 2172
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
2173
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
2174 2175 2176
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
2177 2178

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
2201 2202

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
2203 2204 2205


class SpectralNorm(layers.Layer):
2206
    r"""
2207 2208
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2219
    :attr:`power_iters` should be a positive integer, do following
2220 2221 2222 2223
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

2224
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
2225

2226
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
2227 2228 2229 2230 2231 2232 2233 2234

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

2235
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
2236 2237 2238 2239


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2240
    Parameters:
2241
        weight_shape(list or tuple): The shape of weight parameter.
2242 2243 2244 2245
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2246
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2247 2248

    Returns:
2249
        None
2250 2251 2252 2253

    Examples:
       .. code-block:: python

C
Chen Long 已提交
2254 2255
            import paddle
            x = paddle.rand((2,8,32,32))
2256

C
Chen Long 已提交
2257 2258 2259 2260
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
2261 2262 2263

    """

2264 2265 2266
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
2267
        super().__init__()
L
lujun 已提交
2268 2269 2270
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2271
        self._dtype = dtype
L
lujun 已提交
2272

2273
        self._weight_shape = list(weight_shape)
2274 2275 2276 2277 2278
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
2279
            "length of `weight_shape`, but received dim="
2280 2281
            "{}".format(dim)
        )
2282 2283
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2284

2285 2286 2287 2288 2289 2290
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
2291
        self.weight_u.stop_gradient = True
L
lujun 已提交
2292

2293 2294 2295 2296 2297 2298
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
2299
        self.weight_v.stop_gradient = True
L
lujun 已提交
2300 2301

    def forward(self, weight):
2302
        if in_dygraph_mode():
2303 2304 2305 2306 2307 2308 2309 2310
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
2311

2312 2313 2314
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
2315
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2316
        out = self._helper.create_variable_for_type_inference(self._dtype)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
2329 2330 2331 2332 2333

        return out


class TreeConv(layers.Layer):
2334
    """
2335 2336 2337 2338 2339 2340 2341 2342
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
2343

2344
    Parameters:
2345
        feature_size(int): last dimension of nodes_vector.
2346 2347 2348 2349 2350 2351 2352
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2353
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2354

2355 2356
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2357

2358
        **bias** (Parameter or None): the learnable bias of this layer.
2359

2360 2361
    Returns:
        None
L
lujun 已提交
2362

2363
    Examples:
L
lujun 已提交
2364

2365
        .. code-block:: python
2366

2367 2368
          import paddle.fluid as fluid
          import numpy
2369

2370 2371 2372 2373
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2374
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2375
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2376 2377
    """

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
2390
        super().__init__()
L
lujun 已提交
2391
        self._name = name
2392
        self._feature_size = feature_size
L
lujun 已提交
2393 2394 2395 2396 2397 2398
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2399 2400
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2401
        if self._bias_attr:
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
2414 2415

    def forward(self, nodes_vector, edge_set):
2416 2417
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
2418
        if self._name:
2419 2420 2421
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
2422 2423
        else:
            out = self._helper.create_variable_for_type_inference(
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
2438 2439
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
2440 2441 2442 2443 2444 2445 2446 2447
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
2448 2449 2450
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
2474
          inp_np = paddle.to_tensor(inp_np)
2475 2476 2477 2478 2479 2480
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
2481
        super().__init__()
2482 2483 2484 2485
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
2486 2487 2488
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
2489
        return out