gaussian_random_kernel.cu 3.0 KB
Newer Older
F
furnace 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gaussian_random_kernel.h"

#include <thrust/random.h>
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/common/amp_type_traits.h"
F
furnace 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"

#include "paddle/fluid/framework/generator.h"

namespace phi {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
  unsigned int offset_ = 0;

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
44 45 46
    using MT = typename phi::dtype::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(static_cast<MT>(mean_),
                                         static_cast<MT>(std_));
F
furnace 已提交
47 48 49 50 51 52 53 54 55
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
    MT out = dist(rng);
    return static_cast<T>(out);
  }
};

template <typename T, typename Context>
void GaussianRandomKernel(const Context& dev_ctx,
56
                          const IntArray& shape,
F
furnace 已提交
57 58 59 60 61
                          float mean,
                          float std,
                          int seed,
                          DataType dtype,
                          DenseTensor* out) {
62 63
  out->Resize(phi::make_ddim(shape.GetData()));
  dev_ctx.template Alloc<T>(out);
F
furnace 已提交
64
  if (seed == 0) {
65
    // use global Generator seed
66 67 68 69
    using MT = typename phi::dtype::MPTypeTrait<T>::Type;
    funcs::normal_distribution<MT> dist;
    funcs::normal_transform<MT> trans(static_cast<MT>(mean),
                                      static_cast<MT>(std));
70
    funcs::distribution_and_transform<T>(dev_ctx, out, dist, trans);
F
furnace 已提交
71
  } else {
72
    // use OP seed
73 74
    auto func =
        GaussianGenerator<T>(static_cast<T>(mean), static_cast<T>(std), seed);
75
    IndexKernel<T, GaussianGenerator<T>>(dev_ctx, out, func);
F
furnace 已提交
76 77 78 79 80 81 82 83 84 85
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(gaussian_random,
                   GPU,
                   ALL_LAYOUT,
                   phi::GaussianRandomKernel,
                   phi::dtype::float16,
86
                   phi::dtype::bfloat16,
F
furnace 已提交
87 88
                   float,
                   double) {}