vision.py 9.1 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define specitial functions used in computer vision task
R
ruri 已提交
16

17
from .. import Layer, functional
R
ruri 已提交
18

19 20
__all__ = []

R
ruri 已提交
21

Z
zhiboniu 已提交
22
class PixelShuffle(Layer):
R
ruri 已提交
23
    """
24 25

    PixelShuffle Layer
R
ruri 已提交
26

27 28 29
    Rearranges elements in a tensor of shape :math:`[N, C, H, W]`
    to a tensor of shape :math:`[N, C/upscale_factor^2, H*upscale_factor, W \times upscale_factor]`,
    or from shape :math:`[N, H, W, C]` to :math:`[N, H \times upscale_factor, W \times upscale_factor, C/upscale_factor^2]`.
R
ruri 已提交
30 31 32 33 34 35 36 37 38
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/upscale_factor.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

    Parameters:

        upscale_factor(int): factor to increase spatial resolution.
39
        data_format (str, optional): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
R
ruri 已提交
40 41 42
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
43 44
        - x: 4-D tensor with shape of :math:`(N, C, H, W)` or :math:`(N, H, W, C)`.
        - out: 4-D tensor with shape of :math:`(N, C/upscale_factor^2, H \times upscale_factor, W \times upscale_factor)` or :math:`(N, H \times upscale_factor, W \times upscale_factor, C/upscale_factor^2)`.
R
ruri 已提交
45 46 47 48


    Examples:
        .. code-block:: python
49

R
ruri 已提交
50 51 52
            import paddle
            import paddle.nn as nn

53
            x = paddle.randn(shape=[2,9,4,4])
R
ruri 已提交
54
            pixel_shuffle = nn.PixelShuffle(3)
55
            out_var = pixel_shuffle(x)
R
ruri 已提交
56
            out = out_var.numpy()
57
            print(out.shape)
R
ruri 已提交
58 59 60 61 62
            # (2, 1, 12, 12)

    """

    def __init__(self, upscale_factor, data_format="NCHW", name=None):
63
        super().__init__()
R
ruri 已提交
64 65 66 67 68

        if not isinstance(upscale_factor, int):
            raise TypeError("upscale factor must be int type")

        if data_format not in ["NCHW", "NHWC"]:
69 70 71 72
            raise ValueError(
                "Data format should be 'NCHW' or 'NHWC'."
                "But recevie data format: {}".format(data_format)
            )
R
ruri 已提交
73 74 75 76 77 78

        self._upscale_factor = upscale_factor
        self._data_format = data_format
        self._name = name

    def forward(self, x):
79 80 81
        return functional.pixel_shuffle(
            x, self._upscale_factor, self._data_format, self._name
        )
82 83 84

    def extra_repr(self):
        main_str = 'upscale_factor={}'.format(self._upscale_factor)
85
        if self._data_format != 'NCHW':
86 87 88 89
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str
90 91


92 93
class PixelUnshuffle(Layer):
    """
94
    Rearranges elements in a tensor of shape :math:`[N, C, H, W]`
95 96
    to a tensor of shape :math:`[N, r^2C, H/r, W/r]`, or from shape
    :math:`[N, H, W, C]` to :math:`[N, H/r, W/r, r^2C]`, where :math:`r` is the
97 98 99 100 101 102 103
    downscale factor. This operation is the reversion of PixelShuffle operation.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

    Parameters:
        downscale_factor (int): Factor to decrease spatial resolution.
104
        data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - **x**: 4-D tensor with shape of :math:`[N, C, H, W]` or :math:`[N, C, H, W]`.
        - **out**: 4-D tensor with shape of :math:`[N, r^2C, H/r, W/r]` or :math:`[N, H/r, W/r, r^2C]`, where :math:`r` is :attr:`downscale_factor`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn([2, 1, 12, 12])
            pixel_unshuffle = nn.PixelUnshuffle(3)
            out = pixel_unshuffle(x)
120 121
            print(out.shape)
            # [2, 9, 4, 4]
122 123 124 125

    """

    def __init__(self, downscale_factor, data_format="NCHW", name=None):
126
        super().__init__()
127 128 129 130 131 132 133 134

        if not isinstance(downscale_factor, int):
            raise TypeError("Downscale factor must be int type")

        if downscale_factor <= 0:
            raise ValueError("Downscale factor must be positive")

        if data_format not in ["NCHW", "NHWC"]:
135 136 137 138
            raise ValueError(
                "Data format should be 'NCHW' or 'NHWC'."
                "But recevie data format: {}".format(data_format)
            )
139 140 141 142 143 144

        self._downscale_factor = downscale_factor
        self._data_format = data_format
        self._name = name

    def forward(self, x):
145 146 147
        return functional.pixel_unshuffle(
            x, self._downscale_factor, self._data_format, self._name
        )
148 149 150 151 152 153 154 155 156 157

    def extra_repr(self):
        main_str = 'downscale_factor={}'.format(self._downscale_factor)
        if self._data_format != 'NCHW':
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str


158 159 160 161 162
class ChannelShuffle(Layer):
    """
    This operator divides channels in a tensor of shape [N, C, H, W] or [N, H, W, C] into g groups,
    getting a tensor with the shape of [N, g, C/g, H, W] or [N, H, W, g, C/g], and transposes them
    as [N, C/g, g, H, W] or [N, H, W, g, C/g], then rearranges them to original tensor shape. This
163 164
    operation can improve the interaction between channels, using features efficiently. Please
    refer to the paper: `ShuffleNet: An Extremely Efficient
165
    Convolutional Neural Network for Mobile Devices <https://arxiv.org/abs/1707.01083>`_ .
166
    by Zhang et. al (2017) for more details.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    Parameters:
        groups (int): Number of groups to divide channels in.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - **x**: 4-D tensor with shape of [N, C, H, W] or [N, H, W, C].
        - **out**: 4-D tensor with shape and dtype same as x.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            channel_shuffle = nn.ChannelShuffle(3)
            y = channel_shuffle(x)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """

    def __init__(self, groups, data_format="NCHW", name=None):
201
        super().__init__()
202 203 204 205 206 207 208 209

        if not isinstance(groups, int):
            raise TypeError("groups must be int type")

        if groups <= 0:
            raise ValueError("groups must be positive")

        if data_format not in ["NCHW", "NHWC"]:
210 211 212 213
            raise ValueError(
                "Data format should be 'NCHW' or 'NHWC'."
                "But recevie data format: {}".format(data_format)
            )
214 215 216 217 218 219

        self._groups = groups
        self._data_format = data_format
        self._name = name

    def forward(self, x):
220 221 222
        return functional.channel_shuffle(
            x, self._groups, self._data_format, self._name
        )
223 224 225 226 227 228 229 230

    def extra_repr(self):
        main_str = 'groups={}'.format(self._groups)
        if self._data_format != 'NCHW':
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str