framework.py 261.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
51
    'set_ipu_shard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
J
Jiabin Yang 已提交
57
    '_non_static_mode',
L
lujun 已提交
58
    'in_dygraph_mode',
59
    'is_compiled_with_cinn',
C
chengduo 已提交
60
    'is_compiled_with_cuda',
61
    'is_compiled_with_rocm',
62
    'is_compiled_with_xpu',
63
    'is_compiled_with_npu',
64
    'Variable',
65
    'require_version',
66
    'device_guard',
G
guofei 已提交
67 68
    'set_flags',
    'get_flags',
69
]
Y
Yu Yang 已提交
70

Q
qiaolongfei 已提交
71 72 73 74
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
75 76
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
77
_dygraph_tracer_ = None
L
Ligoml 已提交
78
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
79
_global_expected_place_ = None
80
_current_device = None
81
global_prog_seed = 0
82
_current_pipeline_stage = None
83
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
84
_already_patch_varbase = False
85
_current_cuda_graph_mode = None
86
_global_flags_ = core.globals()
L
Ligoml 已提交
87 88 89 90 91 92
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
93 94

# Some explanation of our execution system 2022.03
95
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
96
# build a fast execution system for dynamic mode. But we can't just remove all legacy
97
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
98
# these flags.
99
#
J
Jiabin Yang 已提交
100
# 1. _non_static_mode():
101
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
102 103 104 105
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
106
#
J
Jiabin Yang 已提交
107
# They have a relation ship as below:
108
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
109
# dygraph mode means you are not in _in_legacy_dygraph.
110
#
J
Jiabin Yang 已提交
111 112 113 114 115 116
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


117 118 119 120 121
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
122
    from paddle import _C_ops, _legacy_C_ops
123 124 125
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

126 127 128
    global _already_patch_eager_tensor
    global _already_patch_varbase

129
    assert isinstance(is_eager, bool)
130
    # switch into eager mode
131
    if is_eager:
132
        _legacy_C_ops.switch_to_eager_ops()
133 134 135 136 137 138
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
139
    else:
140
        _legacy_C_ops.switch_to_core_ops()
141 142 143 144 145
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
146

147 148 149 150 151 152
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
L
Ligoml 已提交
153

154 155 156 157 158
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
159 160


J
Jiabin Yang 已提交
161 162 163
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
164
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
165 166 167 168 169


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
170
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
171 172 173 174 175 176 177


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


178 179 180 181 182 183 184 185 186 187
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
    # Only enable eager on CPU/GPU
L
Ligoml 已提交
188 189 190 191 192 193
    is_not_support = (
        core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
251 252 253


@signature_safe_contextmanager
J
Jiabin Yang 已提交
254
def _test_eager_guard(place=None):
255 256 257 258 259
    # FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
    # only GPU/CPU. Remove this after we improve this feature.
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
260
    try:
J
Jiabin Yang 已提交
261
        yield
262
    finally:
263 264
        if not already_fallback:
            _enable_legacy_dygraph()
265 266


267 268
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
269 270 271 272
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
284
@signature_safe_contextmanager
285
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
286 287 288 289
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
290
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
291
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
292
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
L
Ligoml 已提交
293
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
294
            which means no pipelining computation order and run Ops in terms of graph.
L
Ligoml 已提交
295

J
jianghaicheng 已提交
296
    **Note**:
L
Ligoml 已提交
297
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
J
jianghaicheng 已提交
298
    to :code:`paddle.static.IpuStrategy` .
L
Ligoml 已提交
299 300 301
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
J
jianghaicheng 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


337 338 339 340 341 342 343 344 345
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
L
Ligoml 已提交
346
            The sharded model will be computed from small to large. The default value is -1,
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
L
Ligoml 已提交
374

375 376 377 378 379
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
L
Ligoml 已提交
380 381
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
382 383 384 385 386 387 388 389 390 391 392 393

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


394 395
def require_version(min_version, max_version=None):
    """
L
Ligoml 已提交
396 397 398
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
399

L
Ligoml 已提交
400 401 402 403
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
404

L
Ligoml 已提交
405 406
    Returns:
        None.
407

L
Ligoml 已提交
408 409 410 411 412 413
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
414

L
Ligoml 已提交
415 416
    Examples:
        .. code-block:: python
417

L
Ligoml 已提交
418
            import paddle.fluid as fluid
419

L
Ligoml 已提交
420 421
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
422

L
Ligoml 已提交
423 424 425
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
426 427 428
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
L
Ligoml 已提交
429 430
            % (type(min_version))
        )
431 432 433 434

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
L
Ligoml 已提交
435 436
            % (type(max_version))
        )
437 438 439 440 441

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
442 443
            "like '1.5.2.0', but received %s" % min_version
        )
444 445 446 447 448 449

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
L
Ligoml 已提交
450 451
                "like '1.5.2.0', but received %s" % max_version
            )
452 453

    version_installed = [
L
Ligoml 已提交
454 455 456 457
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
474 475 476
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
477 478 479 480
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
L
Ligoml 已提交
481 482 483
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
484 485 486
        return

    min_version_split = min_version.split('.')
L
Ligoml 已提交
487 488 489
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
490 491 492

    if max_version is not None:
        max_version_split = max_version.split('.')
L
Ligoml 已提交
493 494 495
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
496

L
Ligoml 已提交
497 498 499 500
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
501 502
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
L
Ligoml 已提交
503 504
                % (min_version, max_version, fluid_version.full_version)
            )
505 506 507 508 509
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
L
Ligoml 已提交
510 511
                % (min_version, fluid_version.full_version, min_version)
            )
512 513


514 515
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
516 517 518
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
519 520 521 522 523 524 525
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
526 527 528 529
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
530 531 532 533 534
        return func(*args, **kwargs)

    return __impl__


535 536 537
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
L
Ligoml 已提交
538 539 540 541 542

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
543 544 545 546 547
        return func(*args, **kwargs)

    return __impl__


548 549
def _static_only_(func):
    def __impl__(*args, **kwargs):
L
Ligoml 已提交
550 551 552 553
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
554 555 556 557 558
        return func(*args, **kwargs)

    return __impl__


559 560 561 562 563
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


564 565 566 567 568 569
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
570
# same base class.
571 572 573
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
574 575 576 577
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
L
Ligoml 已提交
578 579
            % (func.__name__, func.__name__)
        )
580 581 582 583

    return __impl__


T
tangwei12 已提交
584 585
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
586 587 588 589 590 591 592 593 594
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
L
Ligoml 已提交
595 596
                DeprecationWarning,
            )
597 598 599 600 601 602 603
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


604 605
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
606
static_only = wrap_decorator(_static_only_)
607
fake_interface_only = wrap_decorator(_fake_interface_only_)
608
non_static_only = wrap_decorator(_non_static_only_)
609 610


L
lujun 已提交
611 612
def _dygraph_tracer():
    return _dygraph_tracer_
613

W
Wu Yi 已提交
614

615 616 617 618
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
619
def _current_expected_place():
620 621 622
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
623 624 625 626 627
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
628
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
629 630 631 632 633
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
634 635 636 637 638 639
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
640
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
641 642 643 644 645
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
646 647 648 649 650 651
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
652
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
653 654 655 656 657
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
673
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
674 675


L
Leo Chen 已提交
676 677
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
L
Ligoml 已提交
678 679
    """
    convert VarBase tp numpy
T
tangwei12 已提交
680

L
Ligoml 已提交
681 682 683
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
684 685 686 687 688 689 690 691 692
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
693
def _cpu_num():
694
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
695 696 697 698 699 700 701
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
L
Ligoml 已提交
702 703 704
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
705
        os.environ['CPU_NUM'] = str(1)
706
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
707 708 709 710 711 712 713 714 715 716
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
717 718


719 720 721 722 723 724 725 726 727
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


728 729 730 731 732 733 734 735 736
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


737 738 739 740 741 742 743 744 745
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


776 777 778 779 780 781 782
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
L
Ligoml 已提交
783

784 785 786 787 788 789
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

L
Ligoml 已提交
790
    Returns: None
791 792 793 794 795 796 797 798 799 800

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
816 817 818 819
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

820
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
821 822 823 824

    Examples:
        .. code-block:: python

825
            import paddle
826
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
827 828 829 830
    """
    return core.is_compiled_with_cuda()


831 832 833 834 835 836 837 838 839 840
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
841
            support_gpu = paddle.device.is_compiled_with_rocm()
842 843 844 845
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
846
def cuda_places(device_ids=None):
L
lujun 已提交
847
    """
848
    Note:
849 850 851
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
852
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
853 854

    If :code:`device_ids` is None, environment variable of
855
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
856
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
857
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
858
    If :code:`FLAGS_selected_gpus` is not set, all visible
859
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
860 861

    If :code:`device_ids` is not None, it should be the device
862
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
863
    the returned list would be
C
Chen Weihang 已提交
864
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
865

866
    Parameters:
867
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
868 869

    Returns:
C
Chen Weihang 已提交
870
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
871 872

    Examples:
L
Ligoml 已提交
873

L
lujun 已提交
874 875
        .. code-block:: python

C
Chen Weihang 已提交
876 877
            import paddle
            import paddle.static as static
T
tangwei12 已提交
878

879
            # required: gpu
L
Ligoml 已提交
880

C
Chen Weihang 已提交
881 882 883
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
884 885

    """
L
Ligoml 已提交
886
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
887
    if device_ids is None:
C
chengduo 已提交
888
        device_ids = _cuda_ids()
S
sneaxiy 已提交
889 890 891 892 893
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


894 895 896 897
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
898 899 900 901 902 903 904 905 906
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
907
        the returned list would be
S
sunzhongkai588 已提交
908
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
L
Ligoml 已提交
909

910 911 912 913 914 915
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
916

917 918
            # required: xpu

919 920
            import paddle
            import paddle.static as static
L
Ligoml 已提交
921

922 923 924
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
L
Ligoml 已提交
925
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
926 927 928 929 930 931 932
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


933 934 935 936
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
L
Ligoml 已提交
937

938 939 940 941 942 943 944 945 946
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
L
Ligoml 已提交
947
    the returned list would be
948
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
L
Ligoml 已提交
949

950 951 952 953 954 955 956 957 958 959 960
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
L
Ligoml 已提交
961

962 963 964
            paddle.enable_static()
            npu_places = static.npu_places()
    """
L
Ligoml 已提交
965
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
966 967 968 969 970 971 972
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
973
def cpu_places(device_count=None):
L
lujun 已提交
974
    """
C
Chen Weihang 已提交
975
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
976

S
add doc  
sneaxiy 已提交
977
    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
978
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
979 980
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
981 982
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
983

984 985
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
986 987

    Returns:
C
Chen Weihang 已提交
988
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
989 990

    Examples:
L
Ligoml 已提交
991

L
lujun 已提交
992 993
        .. code-block:: python

C
Chen Weihang 已提交
994 995
            import paddle
            import paddle.static as static
T
tangwei12 已提交
996

C
Chen Weihang 已提交
997 998 999
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1000 1001
    """

S
sneaxiy 已提交
1002 1003 1004 1005 1006 1007
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1008
    """
1009
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1010 1011

    If :code:`device_count` is None, the device count would
L
Ligoml 已提交
1012
    be determined by environment variable :code:`CPU_NUM`.
1013 1014 1015 1016
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1017

1018 1019
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1020 1021

    Returns:
1022
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1023 1024 1025 1026

    Examples:
        .. code-block:: python

1027
            import paddle.fluid as fluid
L
lujun 已提交
1028 1029 1030 1031 1032
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
L
Ligoml 已提交
1033
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1034
    if device_count is None:
1035 1036
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1037 1038


1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
L
Ligoml 已提交
1072
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1073 1074 1075 1076 1077 1078 1079
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
L
Ligoml 已提交
1091 1092 1093
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1107
@signature_safe_contextmanager
1108 1109
def name_scope(prefix=None):
    """
1110

1111
    Generate hierarchical name prefix for the operators in Static Graph.
1112

L
Ligoml 已提交
1113
    Note:
T
Tao Luo 已提交
1114 1115
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1116
        Don't use it in dygraph, since it will cause memory leak.
1117 1118

    Args:
T
Tao Luo 已提交
1119
        prefix(str, optional): prefix. Default is none.
1120 1121

    Examples:
L
Ligoml 已提交
1122

1123
        .. code-block:: python
T
Tink_Y 已提交
1124

1125 1126 1127
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1128
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1129
             b = a + 1
1130
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1131
                c = b * 1
1132
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1133
                d = c / 1
1134 1135 1136
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1137 1138
                g = f - 1

L
Ligoml 已提交
1139
          # Op are created in the default main program.
1140
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1156 1157
    """
    # TODO(panyx0718): Only [0-9a-z].
1158
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1159
    if _non_static_mode():
L
Leo Chen 已提交
1160 1161
        yield
    else:
T
tianshuo78520a 已提交
1162
        assert prefix, "namescope prefix can not be empty."
1163 1164
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1165 1166 1167 1168
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1181 1182
def generate_control_dev_var_name():
    import random
L
Ligoml 已提交
1183

W
Wu Yi 已提交
1184
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1185 1186 1187 1188


def grad_var_name(var_name):
    """
1189 1190
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1191 1192 1193
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1194

1195
def convert_np_dtype_to_dtype_(np_dtype):
1196 1197
    """
    Convert the data type in numpy to the data type in Paddle
1198

1199
    Args:
1200
        np_dtype(np.dtype): the data type in numpy.
1201

1202 1203
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1204 1205

    """
1206 1207
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1208
        return core.VarDesc.VarType.FP32
1209
    elif dtype == np.float64:
1210
        return core.VarDesc.VarType.FP64
1211
    elif dtype == np.float16:
1212
        return core.VarDesc.VarType.FP16
1213
    elif dtype == np.int32:
1214
        return core.VarDesc.VarType.INT32
1215
    elif dtype == np.int16:
1216
        return core.VarDesc.VarType.INT16
1217
    elif dtype == np.int64:
1218
        return core.VarDesc.VarType.INT64
1219
    elif dtype == np.bool_:
1220
        return core.VarDesc.VarType.BOOL
1221
    elif dtype == np.uint16:
1222 1223 1224
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1225 1226
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1227 1228
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1229 1230 1231 1232
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1233
    else:
M
minqiyang 已提交
1234
        raise ValueError("Not supported numpy dtype %s" % dtype)
1235 1236 1237


def dtype_is_floating(dtype):
1238 1239 1240
    """
    Check the data type is floating or not.
    Args:
1241
        dtype(np.dtype|core.VarDesc.VarType): data type.
1242 1243 1244 1245 1246
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1247
    if not isinstance(dtype, core.VarDesc.VarType):
1248 1249
        dtype = convert_np_dtype_to_dtype_(dtype)

1250
    return dtype in [
L
Ligoml 已提交
1251 1252 1253
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1254
    ]
1255 1256


Y
Yang Yang(Tony) 已提交
1257
def _debug_string_(proto, throw_on_error=True):
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1269
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1270
    if not proto.IsInitialized(error_fields) and throw_on_error:
1271 1272
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
L
Ligoml 已提交
1273 1274 1275
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1276 1277 1278
    return proto.__str__()


L
Ligoml 已提交
1279 1280 1281 1282 1283 1284 1285 1286
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1287 1288 1289 1290
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1291
    if _in_eager_mode_:
1292
        eager_tensor = core.eager.Tensor(
1293
            dtype if dtype else core.VarDesc.VarType.FP32,
L
Ligoml 已提交
1294 1295
            list(shape) if shape else [],
            name,
1296
            type if type else core.VarDesc.VarType.LOD_TENSOR,
L
Ligoml 已提交
1297 1298
            True if persistable else False,
        )
1299 1300
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1301
    else:
L
Ligoml 已提交
1302 1303 1304 1305 1306 1307 1308
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1309 1310


1311 1312 1313 1314 1315 1316 1317
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
L
Ligoml 已提交
1318 1319
    if not vals:
        return False
1320 1321 1322
    return all(isinstance(v, expected_type) for v in vals)


1323 1324 1325 1326 1327
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1328
            return issubclass(t, core.eager.Tensor)
1329
        else:
J
Jiabin Yang 已提交
1330 1331
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1332 1333 1334 1335 1336 1337 1338 1339
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1340
            return issubclass(t, EagerParamBase)
1341
        else:
J
Jiabin Yang 已提交
1342 1343
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1344 1345 1346 1347
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1348
class Variable(object):
1349
    """
J
Jiabin Yang 已提交
1350
    **Notes**:
1351
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1352

1353 1354
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1355 1356 1357
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1358
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1359 1360
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1361

1362
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1363
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1364

T
tianshuo78520a 已提交
1365
    Most of a Variable's member variables can be set to be None. It mean
1366
    it is not available or will be specified later.
1367

1368
    Examples:
1369 1370
        In Static Graph Mode:

1371 1372
        .. code-block:: python

1373
            import paddle.fluid as fluid
1374
            cur_program = fluid.Program()
1375 1376 1377 1378
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1379

J
Jiabin Yang 已提交
1380
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1381 1382 1383 1384 1385 1386 1387 1388 1389

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1390 1391
    """

L
Ligoml 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1409 1410
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1411
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1412

Y
Yu Yang 已提交
1413
        if dtype is not None:
1414
            if not isinstance(dtype, core.VarDesc.VarType):
1415
                dtype = convert_np_dtype_to_dtype_(dtype)
1416

S
Steffy-zxf 已提交
1417 1418 1419 1420
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1421 1422 1423
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1424 1425
        self.belong_to_optimizer = belong_to_optimizer

1426 1427 1428 1429 1430
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1431

1432 1433 1434
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1435

1436 1437 1438
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Ligoml 已提交
1439 1440 1441 1442 1443
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1444

1445
        if shape is not None:
1446
            if is_new_var:
1447 1448 1449 1450 1451 1452
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1453 1454
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
L
Ligoml 已提交
1455 1456
                        "matched.".format(self.name, old_shape, shape)
                    )
1457 1458 1459 1460 1461 1462
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Ligoml 已提交
1463 1464 1465 1466 1467 1468
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1469 1470 1471 1472 1473 1474

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Ligoml 已提交
1475 1476 1477 1478 1479 1480
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1481 1482 1483 1484 1485 1486
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1487 1488
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1489
                        "persistable is {2}. They are not matched".format(
L
Ligoml 已提交
1490 1491 1492
                            self.name, self.persistable, persistable
                        )
                    )
1493

1494 1495
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1496

1497 1498 1499 1500 1501 1502 1503
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1504

1505 1506
        self.block.vars[name] = self
        self.op = None
1507
        self.stop_gradient = stop_gradient
1508
        self.is_data = is_data
Y
Yu Yang 已提交
1509

1510 1511 1512
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1513 1514
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1515

1516
        Returns:
J
Jiabin Yang 已提交
1517
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1518 1519 1520 1521

        Examples:
            .. code-block:: python

1522
                import paddle
1523

1524 1525 1526 1527
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1528

1529 1530
                # create a detached Variable
                y = x.detach()
1531
        """
1532

L
Ligoml 已提交
1533 1534 1535 1536
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1537 1538 1539 1540 1541 1542

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
1543 1544
            stop_gradient=True,
        )
1545

L
Ligoml 已提交
1546 1547 1548
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1549
        return output
1550

1551
    @fake_interface_only
1552
    def numpy(self):
1553
        """
J
Jiabin Yang 已提交
1554
        **Notes**:
T
tianshuo78520a 已提交
1555
            **This API is ONLY available in Dygraph mode**
1556

J
Jiabin Yang 已提交
1557
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1558 1559 1560 1561 1562

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1563
            ndarray: dtype is same as current Variable
1564 1565 1566 1567 1568 1569

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1570
                from paddle.fluid.dygraph import Linear
1571 1572 1573 1574
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1575
                    linear = Linear(32, 64)
1576
                    data = to_variable(data)
1577
                    x = linear(data)
1578 1579 1580
                    print(x.numpy())

        """
1581
        pass
1582

1583
    @fake_interface_only
1584
    def backward(self, retain_graph=False):
1585
        """
J
Jiabin Yang 已提交
1586
        **Notes**:
T
tianshuo78520a 已提交
1587
            **This API is ONLY available in Dygraph mode**
1588

1589
        Run backward of current Graph which starts from current Tensor.
1590

J
Jiabin Yang 已提交
1591
        Args:
1592 1593 1594 1595
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1596

J
Jiabin Yang 已提交
1597 1598
        Returns:
            NoneType: None
1599 1600 1601 1602 1603

        Examples:
            .. code-block:: python

                import numpy as np
1604 1605
                import paddle
                paddle.disable_static()
1606 1607

                x = np.ones([2, 2], np.float32)
1608 1609 1610 1611 1612 1613 1614
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1615 1616
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1617
                loss.backward()
1618 1619

        """
1620
        pass
1621

1622
    @fake_interface_only
1623
    def gradient(self):
1624
        """
J
Jiabin Yang 已提交
1625
        **Notes**:
T
tianshuo78520a 已提交
1626
            **This API is ONLY available in Dygraph mode**
1627 1628 1629

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1630
        Returns:
1631
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1632 1633 1634 1635 1636 1637 1638

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1639
                # example1: return ndarray
1640 1641 1642 1643 1644 1645 1646 1647 1648
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1649
                    loss2.backward()
1650 1651
                    print(loss2.gradient())

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1665
        """
1666
        pass
1667

1668
    @fake_interface_only
1669
    def clear_gradient(self):
1670
        """
J
Jiabin Yang 已提交
1671
        **Notes**:
T
tianshuo78520a 已提交
1672
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1673 1674

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1675

J
Jiabin Yang 已提交
1676
        Clear  (set to ``0`` ) the Gradient of Current Variable
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1695
                    loss2.backward()
1696 1697 1698 1699 1700
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1701
        pass
X
Xin Pan 已提交
1702

1703 1704 1705 1706
    @fake_interface_only
    def register_hook(self, hook):
        pass

1707
    def __str__(self):
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1724 1725
                import paddle
                import paddle.static as static
1726

1727 1728 1729
                paddle.enable_static()

                cur_program = static.Program()
1730 1731 1732 1733 1734 1735
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1736 1737
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
L
Ligoml 已提交
1738 1739 1740 1741
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1742
            dtype_str = str(self.dtype).split('.')[1]
L
Ligoml 已提交
1743 1744 1745 1746 1747 1748 1749
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1750
        else:
L
Ligoml 已提交
1751
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1752

1753
        if self.is_parameter:
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

L
Ligoml 已提交
1764 1765 1766 1767
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1768
        dist_context = get_default_distributed_context()
1769 1770
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
L
Ligoml 已提交
1771 1772 1773
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1774

1775
        return var_str
Y
Yang Yang(Tony) 已提交
1776

F
update  
fengjiayi 已提交
1777
    def to_string(self, throw_on_error, with_details=False):
1778 1779 1780
        """
        Get debug string.

J
Jiabin Yang 已提交
1781 1782 1783 1784 1785
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1786

1787 1788
        Returns:
            str: The debug string.
1789 1790 1791 1792 1793

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1794
                import paddle
1795

1796
                paddle.enable_static()
1797 1798 1799 1800 1801
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1802
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1803
                print("=============with detail===============")
1804
                print(new_variable.to_string(True, True))
1805
        """
1806
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
1807 1808
            with_details, bool
        )
1809
        protostr = self.desc.serialize_to_string()
1810
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1811 1812
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
L
Ligoml 已提交
1813
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1814
            for attr_name in additional_attr:
L
Ligoml 已提交
1815 1816 1817 1818
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
1819

F
update  
fengjiayi 已提交
1820
        return res_str
1821 1822 1823

    __repr__ = __str__

1824 1825 1826
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
L
Ligoml 已提交
1827

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1851
    @property
1852
    def stop_gradient(self):
J
Jiabin Yang 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1868 1869
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1870 1871 1872
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1873 1874
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1875 1876 1877 1878
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1879
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1880 1881
                assert (out1.gradient() == 0).all()
        """
1882
        return self.desc.stop_gradient()
1883

1884 1885
    @stop_gradient.setter
    def stop_gradient(self, s):
1886
        self.desc.set_stop_gradient(s)
1887

1888 1889
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1911
        return self.desc.persistable()
1912

Y
Yu Yang 已提交
1913 1914
    @persistable.setter
    def persistable(self, p):
1915
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1942 1943
    @property
    def name(self):
J
Jiabin Yang 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1960
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1961

1962 1963 1964 1965 1966 1967
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1968 1969
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1982 1983
    @name.setter
    def name(self, new_name):
1984
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1985

Y
Yu Yang 已提交
1986 1987
    @property
    def shape(self):
J
Jiabin Yang 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2005
        # convert to tuple, make it as same as numpy API.
2006
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2007 2008

    @property
F
fengjiayi 已提交
2009
    def dtype(self):
J
Jiabin Yang 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2026
        return self.desc.dtype()
Y
Yu Yang 已提交
2027 2028 2029

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2043
            import paddle
J
Jiabin Yang 已提交
2044
            import paddle.fluid as fluid
2045 2046

            paddle.enable_static()
J
Jiabin Yang 已提交
2047 2048 2049 2050 2051 2052 2053
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2054 2055
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2056 2057
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2058
        return self.desc.lod_level()
Y
Yu Yang 已提交
2059

Y
Yu Yang 已提交
2060 2061
    @property
    def type(self):
J
Jiabin Yang 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2078
        return self.desc.type()
Y
Yu Yang 已提交
2079

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
L
Ligoml 已提交
2113 2114
            stop_gradient=False,
        )
2115 2116 2117 2118 2119
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
L
Ligoml 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2129 2130
        return out

2131 2132 2133
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
L
Ligoml 已提交
2134
        Variable. It remains in the current graph, that is, the cloned Variable
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
L
Ligoml 已提交
2159 2160
            stop_gradient=self.stop_gradient,
        )
2161

L
Ligoml 已提交
2162 2163 2164
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2165 2166
        return output

W
Wu Yi 已提交
2167
    def _set_error_clip(self, error_clip):
2168 2169 2170 2171 2172 2173 2174 2175 2176
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2177 2178
        self.error_clip = error_clip

2179 2180 2181 2182 2183 2184 2185 2186
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

L
Ligoml 已提交
2187
        Returns:
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

L
Ligoml 已提交
2201
        Returns:
2202 2203 2204 2205 2206 2207
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2219
            raise ValueError("slice step can not be zero")
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
L
Ligoml 已提交
2230 2231 2232
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
L
Ligoml 已提交
2278 2279 2280
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2281
                    raise IndexError("invalid index")
L
Ligoml 已提交
2282 2283 2284 2285 2286
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2300
    def _cloneVar(self, copy=False):
2301 2302
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2303
                name=unique_name.generate_with_ignorable_key(self.name),
L
Ligoml 已提交
2304 2305
                dtype=self.dtype,
            )
2306 2307 2308 2309
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2310
        new_var = self._cloneVar()
L
Ligoml 已提交
2311 2312 2313 2314 2315 2316
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2317 2318 2319
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2320
        new_var = self._cloneVar()
L
Ligoml 已提交
2321 2322 2323 2324 2325 2326 2327 2328
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2329 2330 2331 2332 2333
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2334
                return self._cloneVar(True)
2335 2336 2337 2338 2339 2340 2341
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
L
Ligoml 已提交
2342 2343 2344
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2345 2346 2347
                        start += step
                else:
                    while start > stop:
L
Ligoml 已提交
2348 2349 2350
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2351 2352 2353 2354
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2355
                return self._cloneVar(True)
2356
            index = int(item)
L
Ligoml 已提交
2357 2358 2359
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2360 2361 2362 2363 2364 2365
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2366
        return _getitem_impl_(self, item)
2367

2368
    def __setitem__(self, item, value):
2369
        return _setitem_impl_(self, item, value)
2370

2371 2372
    def get_value(self, scope=None):
        """
L
Ligoml 已提交
2373
        Get the value of variable in given scope.
2374 2375

        Args:
L
Ligoml 已提交
2376
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2387
                import paddle.static as static
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2412 2413
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2414 2415
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
2416

2417 2418
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2419 2420 2421 2422
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2423 2424 2425 2426 2427

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2428 2429 2430
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2431 2432 2433 2434 2435
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
L
Ligoml 已提交
2436
        Set the value to the tensor in given scope.
2437 2438 2439

        Args:
            value(Tensor/ndarray) : The value to be set.
L
Ligoml 已提交
2440
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2441 2442 2443 2444 2445
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
L
Ligoml 已提交
2446

2447 2448 2449 2450
        Examples:
            .. code-block:: python

                import paddle
L
Ligoml 已提交
2451
                import paddle.static as static
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2478
        # can not be imported at the begainning of this file.
2479 2480 2481 2482 2483
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
L
Ligoml 已提交
2484 2485 2486 2487
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2488 2489 2490

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
2491 2492 2493 2494
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2495 2496 2497 2498 2499 2500

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
L
Ligoml 已提交
2501 2502 2503
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
L
Ligoml 已提交
2514 2515 2516 2517
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2528 2529 2530 2531
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2532 2533 2534 2535
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2536 2537 2538 2539 2540 2541 2542
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
L
Ligoml 已提交
2566 2567
            dtype=core.VarDesc.VarType.INT64,
        )
2568

L
Ligoml 已提交
2569 2570 2571
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2572 2573
        return output

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2628
    def dist_attr(self):
2629
        """
2630
        Get distributed attribute of this Variable.
2631
        """
2632
        return self.desc.dist_attr
2633

2634 2635
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2636
        """
2637
        Set distributed attribute of this Variable.
2638
        """
2639
        self.desc.dist_attr = dist_attr
2640

Y
Yu Yang 已提交
2641

F
fengjiayi 已提交
2642 2643 2644
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2645

2646 2647
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2648 2649 2650 2651
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2652
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2653 2654 2655 2656 2657
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2658 2659 2660 2661
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2662 2663 2664 2665 2666 2667 2668 2669
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
L
Ligoml 已提交
2670 2671
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2672 2673 2674 2675 2676 2677
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2678 2679 2680 2681 2682 2683 2684 2685
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2686 2687
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2688 2689
        return self.op_proto_map[type]

2690 2691
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2692
        custom_op_names = []
2693 2694 2695
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2696 2697 2698
                custom_op_names.append(proto.type)

        return custom_op_names
2699

2700 2701 2702 2703
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2704
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2705
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2706
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
L
Ligoml 已提交
2707
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2708 2709
        }

F
fengjiayi 已提交
2710

X
Xin Pan 已提交
2711
class Operator(object):
2712
    """
2713 2714 2715 2716 2717 2718 2719
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2720
        type(str): The type of operator. Default None.
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2741
        Block.append_op or Block._prepend_op instead.
2742 2743 2744 2745

    Examples:
        .. code-block:: python

2746
            import paddle.fluid as fluid
2747
            cur_program = fluid.Program()
2748 2749 2750 2751 2752
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2753
    """
L
Ligoml 已提交
2754

2755
    OP_WITHOUT_KERNEL_SET = {
L
Ligoml 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2787
    }
2788

L
Ligoml 已提交
2789 2790 2791
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2802
        if _non_static_mode():
2803 2804
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2805 2806
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2807
            self._type = type
M
minqiyang 已提交
2808
            self.attrs = attrs if attrs else {}
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2819 2820 2821
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2822 2823 2824
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2825
                op_attrs[
L
Ligoml 已提交
2826 2827
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2828 2829

            role_var_name = op_maker.kOpRoleVarAttrName()
L
Ligoml 已提交
2830 2831 2832 2833
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2834
                op_attrs[role_var_name] = self.block.program._op_role_var
2835 2836 2837 2838 2839

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2840 2841 2842 2843 2844
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2845 2846 2847
                return
            if type is None:
                raise ValueError(
L
Ligoml 已提交
2848 2849
                    "`type` to initialized an Operator can not be None."
                )
2850 2851
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2852 2853 2854
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2855
                        '  File "{}", line {}, in {}'.format(
L
Ligoml 已提交
2856 2857 2858 2859 2860 2861
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2862 2863 2864 2865 2866 2867 2868

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2869 2870 2871 2872 2873 2874 2875 2876
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
L
Ligoml 已提交
2877 2878 2879
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2880
                if 'force_cpu' in op_attrs:
L
Ligoml 已提交
2881 2882 2883
                    if (
                        type == 'less_than' and op_attrs['force_cpu'] != None
                    ) or op_attrs['force_cpu'] != False:
2884 2885 2886
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
L
Ligoml 已提交
2887 2888
                            "used at the same time." % type
                        )
2889
            if _current_pipeline_stage is not None:
L
Ligoml 已提交
2890 2891 2892 2893 2894
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2895
                )
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
L
Ligoml 已提交
2906 2907 2908
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2909 2910
                    if found:
                        in_args = inputs[in_proto.name]
2911
                        if not isinstance(in_args, (list, tuple)):
2912 2913 2914 2915
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
L
Ligoml 已提交
2916 2917
                                % (in_proto.name, len(in_args))
                            )
2918
                        in_arg_names = []
2919
                        for index, arg in enumerate(in_args):
2920 2921 2922 2923
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2924
                            elif isinstance(arg, (Variable, core.VarBase)):
2925
                                in_arg_names.append(cpt.to_text(arg.name))
2926
                            else:
2927 2928 2929 2930
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
L
Ligoml 已提交
2931 2932 2933
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2934 2935 2936 2937 2938 2939 2940 2941 2942
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2943
                        raise ValueError(
L
Ligoml 已提交
2944 2945 2946 2947 2948 2949
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2950 2951 2952 2953 2954 2955 2956 2957 2958
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
L
Ligoml 已提交
2959 2960
                            % (out_proto.name, len(out_args))
                        )
2961 2962
                    out_arg_names = []
                    for arg in out_args:
2963 2964 2965 2966
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2967
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2968
                        if not _non_static_mode():
2969 2970 2971 2972
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2973 2974
                    self.desc.set_output(out_proto.name, out_arg_names)

2975
            extra_attrs_map = core.get_op_extra_attrs(type)
2976 2977 2978 2979 2980
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
L
Ligoml 已提交
2981 2982 2983
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2984 2985 2986
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2987
                for attr_name in extra_attrs_map.keys():
L
Ligoml 已提交
2988 2989 2990 2991 2992 2993
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2994 2995
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2996

J
jianghaicheng 已提交
2997 2998
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2999
                if global_ipu_index >= 0:
L
Ligoml 已提交
3000 3001 3002
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3003
                if global_ipu_stage >= 0:
L
Ligoml 已提交
3004 3005 3006
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3007

3008 3009 3010 3011 3012
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3013
    def _has_kernel(self, op_type):
3014 3015
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3016
    def to_string(self, throw_on_error):
3017
        """
3018 3019
        Get debug string.

3020
        Args:
3021 3022
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3023

3024 3025
        Returns:
            str: The debug string.
3026 3027

        """
3028
        protostr = self.desc.serialize_to_string()
3029
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
3030 3031
        return _debug_string_(proto, throw_on_error)

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3064
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3065 3066
            type(skip_op_callstack)
        )
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3093 3094 3095
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
L
Ligoml 已提交
3096 3097 3098
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
L
Ligoml 已提交
3109 3110
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3111 3112 3113 3114 3115
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3116 3117
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
L
Ligoml 已提交
3118 3119
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3120 3121 3122 3123 3124 3125 3126
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
L
Ligoml 已提交
3127 3128
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3129 3130 3131 3132 3133
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3134
            # it is bytes of serialized protobuf
L
Ligoml 已提交
3135 3136 3137 3138 3139
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3140 3141
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3142 3143 3144 3145 3146 3147 3148 3149 3150
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

L
Ligoml 已提交
3151 3152 3153
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3154

3155 3156 3157 3158
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

L
Ligoml 已提交
3159 3160 3161 3162
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3163
        dist_context = get_default_distributed_context()
3164 3165
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
L
Ligoml 已提交
3166 3167 3168
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3169

3170
        if outputs_str != "{}":
L
Ligoml 已提交
3171 3172 3173 3174 3175 3176
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3177
        else:
L
Ligoml 已提交
3178 3179 3180
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3181 3182
        return op_str

Y
Yang Yang(Tony) 已提交
3183
    def __str__(self):
3184
        return self._to_readable_code()
3185 3186 3187

    __repr__ = __str__

F
fengjiayi 已提交
3188 3189
    @property
    def type(self):
3190
        return self.desc.type()
F
fengjiayi 已提交
3191 3192

    def input(self, name):
3193
        r"""
3194
        Get the input arguments according to the input parameter name.
3195

3196 3197
        Args:
            name(str): The input parameter name.
3198

3199 3200 3201
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3202
        """
F
fengjiayi 已提交
3203 3204
        return self.desc.input(name)

W
Wu Yi 已提交
3205
    def _rename_input(self, old_name, new_name):
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3216
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3217

W
Wu Yi 已提交
3218
    def _rename_output(self, old_name, new_name):
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3229
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3230

F
fengjiayi 已提交
3231 3232 3233 3234
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3235 3236 3237 3238 3239 3240 3241 3242
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3243
    def output(self, name):
3244
        r"""
3245
        Get output arguments by the output parameter name.
3246

3247 3248
        Args:
            name(str): The output parameter name.
3249

3250 3251 3252
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3253
        """
F
fengjiayi 已提交
3254 3255 3256 3257 3258 3259
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3260 3261 3262 3263 3264 3265
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
L
Ligoml 已提交
3266 3267
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3268

F
fengjiayi 已提交
3269
    def has_attr(self, name):
3270
        """
3271 3272
        Whether this Operator has the attribute with name or not.

3273
        Args:
3274
            name(str): the attribute name.
3275

3276 3277
        Returns:
            bool: True if has this attribute.
3278 3279

        """
F
fengjiayi 已提交
3280 3281 3282
        return self.desc.has_attr(name)

    def attr_type(self, name):
3283
        """
3284
        Get the type of attribute by attribute's name.
3285

3286 3287
        Args:
            name(str): the attribute name.
3288

3289 3290
        Returns:
            core.AttrType: the attribute type.
3291
        """
3292
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3293

W
Wu Yi 已提交
3294
    def _set_attr(self, name, val):
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3305 3306
        self._update_desc_attr(name, val)

3307 3308 3309
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3321 3322 3323 3324 3325
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3326
            self.desc.set_block_attr(name, val.desc)
3327
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3328
            self.desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
3329 3330 3331
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3332 3333
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3370

F
fengjiayi 已提交
3371 3372
    @property
    def attr_names(self):
3373
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3374 3375

    def attr(self, name):
3376
        """
3377 3378
        Get the attribute by name.

3379
        Args:
3380
            name(str): the attribute name.
3381

3382 3383
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3384 3385
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3386
        return self.desc.attr(name)
Y
Yu Yang 已提交
3387

W
Wu Yi 已提交
3388
    def _block_attr_id(self, name):
3389
        """
G
gongweibao 已提交
3390
        Get the block attribute's id by name.
3391

3392 3393
        Args:
            name(str): the attribute name.
3394

3395 3396
        Returns:
            int: the block index.
3397
        """
W
Wu Yi 已提交
3398
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3399

W
Wu Yi 已提交
3400
    def _block_attr(self, name):
G
gongweibao 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3411
        id = self._block_attr_id(name)
L
Ligoml 已提交
3412
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3413 3414
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3415
    def _blocks_attr(self, name):
G
gongweibao 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3426
        for i in self._blocks_attr_ids(name):
L
Ligoml 已提交
3427
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3428 3429 3430 3431
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3432
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3443
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3456 3457 3458 3459 3460
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
L
Ligoml 已提交
3475 3476 3477 3478 3479
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3480 3481 3482 3483 3484 3485
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3486
    def all_attrs(self):
F
fengjiayi 已提交
3487
        """
3488 3489 3490
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3491
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3492 3493 3494 3495
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3496
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3497
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3498
                attr_map[n] = self._block_attr(n)
3499
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3500
                attr_map[n] = self._blocks_attr(n)
3501 3502 3503 3504 3505 3506
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3507

F
fengjiayi 已提交
3508 3509
        return attr_map

3510 3511 3512
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3513 3514 3515 3516

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3517 3518 3519
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3520 3521 3522 3523 3524 3525 3526 3527

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3528 3529
            return False

3530 3531 3532 3533 3534 3535
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3536
    @property
3537
    def dist_attr(self):
3538
        """
3539
        Get distributed attribute of this Variable.
3540
        """
3541
        return self.desc.dist_attr
3542

3543 3544
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3545
        """
3546
        Set distributed attribute of this Variable.
3547
        """
3548
        self.desc.dist_attr = dist_attr
3549

Y
Yu Yang 已提交
3550

Y
Yu Yang 已提交
3551
class Block(object):
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3566
        use `Program._create_block()` to create a block.
3567 3568 3569 3570

    Examples:
        .. code-block:: python

3571 3572 3573
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3574 3575 3576 3577 3578 3579 3580 3581 3582
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3583
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3584
        self.desc = program.desc.block(idx)
3585
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3586
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3587
        self.program = program
3588
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3589

3590
    def __str__(self):
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3625
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
3626 3627
            type(skip_op_callstack)
        )
3628 3629 3630 3631 3632 3633 3634
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
L
Ligoml 已提交
3635 3636
                op._to_readable_code(skip_op_callstack)
            )
3637 3638
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3639

F
fengjiayi 已提交
3640 3641
    def to_string(self, throw_on_error, with_details=False):
        """
3642 3643
        Get debug string.

F
fengjiayi 已提交
3644 3645
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3646
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3647
            with_details(bool): more details about variables and parameters
3648 3649
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3650

3651 3652
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3653
        """
3654
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
3655 3656
            with_details, bool
        )
F
fengjiayi 已提交
3657
        if with_details:
F
fengjiayi 已提交
3658
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3659
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
L
Ligoml 已提交
3660 3661 3662
                self.idx,
                self.parent_idx,
            )
3663
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3664
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3665 3666
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3667
            for op in self.ops:
F
fengjiayi 已提交
3668
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
L
Ligoml 已提交
3669 3670
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3671 3672 3673
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3674
            proto = framework_pb2.BlockDesc.FromString(
L
Ligoml 已提交
3675 3676
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
3677 3678
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3679 3680 3681

    __repr__ = __str__

Y
Yu Yang 已提交
3682 3683
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3684
        return self.desc.parent
Y
Yu Yang 已提交
3685

Y
Yu Yang 已提交
3686 3687 3688 3689
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3690
    def _set_forward_block_idx(self, idx):
3691 3692 3693 3694 3695 3696 3697 3698 3699
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3700
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3701

3702 3703 3704 3705 3706 3707 3708 3709
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3710 3711
    @property
    def idx(self):
Y
Yu Yang 已提交
3712
        return self.desc.id
Y
Yu Yang 已提交
3713

Q
Qiao Longfei 已提交
3714
    def var(self, name):
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3728
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3729
            raise TypeError(
L
Ligoml 已提交
3730 3731 3732
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3733 3734
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3735
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3736
        return v
Q
Qiao Longfei 已提交
3737

X
Xin Pan 已提交
3738
    def _find_var_recursive(self, name):
3739 3740 3741 3742 3743 3744 3745
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3746
            Variable: the Variable with the giving name. Or None if not found.
3747
        """
Y
Yu Yang 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3772
        return None
Y
Yu Yang 已提交
3773

X
Xin Pan 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3793

Q
Qiao Longfei 已提交
3794
    def all_parameters(self):
3795
        return list(self.iter_parameters())
3796

3797
    def iter_parameters(self):
L
Ligoml 已提交
3798 3799 3800 3801 3802
        return (
            item[1]
            for item in six.iteritems(self.vars)
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3803

Y
Yu Yang 已提交
3804
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3805
        if _non_static_mode():
L
Leo Chen 已提交
3806 3807
            var = _varbase_creator(*args, **kwargs)
        else:
3808 3809 3810
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3811
        return var
Y
Yu Yang 已提交
3812

Q
Qiao Longfei 已提交
3813 3814 3815
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3816
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3817 3818
        """
        Rename variable in vars and ops' inputs and outputs
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3831
        """
M
minqiyang 已提交
3832 3833
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3834

T
typhoonzero 已提交
3835
        if not self.has_var(name):
3836
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3837 3838
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3839
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3840 3841 3842 3843 3844 3845
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3846
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3847 3848 3849 3850
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3851
        orig_var_type = v.type
M
minqiyang 已提交
3852
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3853
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3854
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3855
        if var_type == "Parameter":
L
Leo Chen 已提交
3856
            if in_dygraph_mode():
L
Ligoml 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3868
            else:
J
Jiabin Yang 已提交
3869
                if _in_legacy_dygraph():
L
Ligoml 已提交
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3881
                else:
L
Ligoml 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3894
        elif var_type == "Variable":
L
Ligoml 已提交
3895 3896 3897 3898 3899 3900 3901
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3902

W
Wu Yi 已提交
3903
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3904 3905 3906
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3907
        self._sync_with_cpp()
3908
        return var
T
typhoonzero 已提交
3909

3910 3911 3912
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3913
        self.desc._remove_var(cpt.to_bytes(name))
3914 3915
        del self.vars[name]

Y
Yu Yang 已提交
3916 3917
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3918
        param = None
L
Leo Chen 已提交
3919
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3920
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3921
        else:
J
Jiabin Yang 已提交
3922 3923 3924 3925
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3926

3927
        if 'initializer' in kwargs:
3928 3929 3930 3931 3932

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3933
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3934
                        # are treated as initialization ops that cause error.
3935
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3936 3937
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
L
Ligoml 已提交
3938 3939 3940
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3941
                        ]:
3942
                            continue
3943 3944 3945 3946 3947 3948 3949
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
L
Ligoml 已提交
3950 3951 3952 3953 3954 3955
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3956
            elif init_ops_len == 1:
3957
                # TODO already inited, do nothing, should log a warning
3958 3959 3960
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3961
        return param
Y
Yu Yang 已提交
3962

Y
Yu Yang 已提交
3963
    def append_op(self, *args, **kwargs):
3964 3965 3966 3967 3968 3969
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3970
        if _non_static_mode():
3971
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3972
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3973
            type = kwargs.get("type", None)
3974 3975 3976
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
L
Ligoml 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3988

M
minqiyang 已提交
3989 3990 3991
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3992
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3993

L
Ligoml 已提交
3994 3995 3996 3997 3998 3999 4000 4001
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4002
        else:
4003 4004
            from paddle.fluid.dygraph.base import param_guard

4005
            op_desc = self.desc.append_op()
4006 4007 4008 4009 4010 4011
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
L
Ligoml 已提交
4012 4013 4014 4015 4016 4017 4018 4019
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4020

M
minqiyang 已提交
4021
            self.ops.append(op)
M
minqiyang 已提交
4022

4023 4024
        return op

W
Wu Yi 已提交
4025
    def _insert_op(self, index, *args, **kwargs):
4026 4027 4028 4029 4030 4031 4032 4033 4034
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4035
        self._sync_with_cpp()
F
fangshuixun007 已提交
4036
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4037

4038 4039
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
L
Ligoml 已提交
4040
        Insert an Operator according to the giving arguments,
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4055 4056 4057 4058 4059 4060 4061 4062 4063
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4064 4065
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4066
        self.desc._remove_op(index, index + 1)
4067 4068
        del self.ops[index]

W
Wu Yi 已提交
4069
    def _slice_ops(self, start, end):
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4080
        return self.ops[start:end]
Y
Yancey1989 已提交
4081

W
Wu Yi 已提交
4082
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4083
        if _non_static_mode():
J
Jiabin Yang 已提交
4084 4085
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
L
Ligoml 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4097
        else:
4098
            op_desc = self.desc._prepend_op()
L
Ligoml 已提交
4099 4100 4101 4102 4103 4104 4105 4106
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4107
            self.ops.insert(0, op)
4108

Y
Yu Yang 已提交
4109 4110
        return op

W
Wu Yi 已提交
4111
    def _sync_with_cpp(self):
4112
        """
4113 4114
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4115
        """
Q
Qiao Longfei 已提交
4116 4117 4118
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4119 4120 4121 4122
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
L
Ligoml 已提交
4123 4124 4125 4126 4127 4128 4129 4130
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4131
                else:
L
Ligoml 已提交
4132 4133 4134 4135 4136 4137
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4138

4139
        # sync variables removed from c++ end
4140
        for var in list(self.vars.keys()):
M
minqiyang 已提交
4141
            if not self.desc.find_var(cpt.to_bytes(var)):
4142 4143
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4144
        # sync operators from cpp
4145 4146 4147 4148
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4165 4166 4167 4168 4169

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4170
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4171 4172 4173 4174 4175 4176 4177

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4178 4179 4180 4181 4182
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
L
Ligoml 已提交
4183 4184 4185 4186 4187 4188
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4189 4190 4191 4192 4193
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4194 4195 4196 4197
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4198
    def _copy_param_info_from(self, other):
4199
        """
4200 4201
        Copy the information of parameters from the other block.

4202
        Args:
4203 4204 4205 4206 4207
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4208 4209 4210 4211 4212

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4213
            raise TypeError(
L
Ligoml 已提交
4214 4215
                "_copy_param_info_from should be invoked with Block"
            )
4216
        for p in other.iter_parameters():
4217 4218 4219
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4220 4221
                # if the Parameter is pruned, v may be None
                continue
4222
            assert isinstance(v, Variable)
4223
            new_p = None
L
Leo Chen 已提交
4224
            if in_dygraph_mode():
L
Ligoml 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4237
            else:
J
Jiabin Yang 已提交
4238
                if _in_legacy_dygraph():
L
Ligoml 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4251 4252 4253 4254 4255 4256 4257
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
L
Ligoml 已提交
4258 4259
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4260 4261 4262 4263 4264
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
L
Ligoml 已提交
4265 4266
                        name=v.name,
                    )
4267 4268
            self.vars[new_p.name] = new_p

4269
    def _clone_variable(self, var, force_persistable=True):
4270 4271
        """
        Clone a variable into current block.
4272

4273 4274
        Args:
            var: the variable to be cloned.
4275 4276 4277
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4278 4279

        Returns:
4280
            Variable: the new  variable cloned from 'var' in current block.
4281 4282
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4283 4284 4285
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
L
Ligoml 已提交
4286 4287 4288
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4289
        elif var.type == core.VarDesc.VarType.RAW:
L
Ligoml 已提交
4290 4291 4292
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4293 4294 4295 4296 4297 4298
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4299
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4300
                is_data=var.is_data,
L
Ligoml 已提交
4301 4302
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4303 4304 4305 4306 4307 4308 4309
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4310
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4311
                is_data=var.is_data,
L
Ligoml 已提交
4312 4313
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4314
        return ret_var
4315

Y
Yu Yang 已提交
4316

4317 4318 4319 4320
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4321
# of some old Python Variables(all old Python Operators) may have
4322
# been destructed.
L
Ligoml 已提交
4323 4324 4325
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4326 4327 4328 4329
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
L
Ligoml 已提交
4330 4331 4332 4333 4334 4335 4336
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4337 4338 4339 4340 4341
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4354 4355 4356
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4438
    def remove_input_by_id(self, node_id):
4439 4440 4441 4442 4443 4444
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4445
        self.node.remove_input(node_id)
4446

4447
    def remove_input(self, node):
4448 4449 4450 4451
        """
        Remove a node from inputs.

        Args:
4452
            node(IrNode): the node being removed.
4453
        """
4454
        self.node.remove_input(node.node)
4455

4456
    def append_input(self, node):
4457 4458 4459 4460
        """
        Append a node in inputs.

        Args:
4461
            node(IrNode): the node being appended.
4462
        """
4463
        self.node.append_input(node.node)
4464 4465 4466 4467 4468 4469 4470 4471

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4472
    def remove_output_by_id(self, node_id):
4473 4474 4475 4476 4477 4478
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4479
        self.node.remove_output(node_id)
4480

4481
    def remove_output(self, node):
4482 4483 4484 4485
        """
        Remove a node from outputs.

        Args:
4486
            node(IrNode): the node being removed.
4487
        """
4488
        self.node.remove_output(node.node)
4489

4490
    def append_output(self, node):
4491 4492 4493 4494
        """
        Append a node in outputs.

        Args:
4495
            node(IrNode): the node being appended.
4496
        """
4497
        self.node.append_output(node.node)
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4532 4533 4534
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
L
Ligoml 已提交
4545 4546 4547
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4548 4549 4550 4551 4552 4553 4554 4555 4556
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
L
Ligoml 已提交
4557 4558 4559
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4560 4561
        return self.node.var().persistable()

4562 4563 4564 4565 4566 4567 4568
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
L
Ligoml 已提交
4569 4570 4571
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4572 4573 4574 4575 4576 4577 4578 4579 4580
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
L
Ligoml 已提交
4581 4582 4583
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4584 4585 4586 4587 4588 4589 4590 4591 4592
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
L
Ligoml 已提交
4593 4594 4595
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4596 4597
        return self.node.var().shape()

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
L
Ligoml 已提交
4631 4632 4633
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
L
Ligoml 已提交
4645 4646 4647
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4648 4649
        self.node.op()._rename_input(old_input_name, new_input_name)

4650 4651 4652 4653 4654 4655 4656 4657
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
L
Ligoml 已提交
4658 4659 4660
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4661 4662
        self.node.op()._rename_output(old_output_name, new_output_name)

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4673 4674 4675
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
L
Ligoml 已提交
4688 4689 4690
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4691 4692 4693 4694 4695 4696 4697 4698 4699
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
L
Ligoml 已提交
4700 4701 4702
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4703 4704
        return self.node.op().set_type(new_type)

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
L
Ligoml 已提交
4719 4720 4721
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4722
        desc = self.node.op()
4723 4724 4725 4726 4727
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4728
            desc.set_block_attr(name, val.desc)
4729
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4730
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
4731 4732 4733
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4734 4735 4736 4737
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4738 4739 4740 4741 4742 4743 4744
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
L
Ligoml 已提交
4745 4746 4747
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4748 4749 4750 4751 4752 4753 4754 4755 4756
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
L
Ligoml 已提交
4757 4758 4759
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4760 4761
        return self.node.op().output_arg_names()

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4783 4784
class IrGraph(object):
    """
4785
    Python IrGraph. Beneath it is a core.Graph, which is used for
4786
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4787 4788
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4789 4790 4791 4792
    """

    def __init__(self, graph, for_test=False):
        """
4793 4794
        Construct an IrGraph using core.Graph.

4795 4796 4797 4798 4799
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
L
Ligoml 已提交
4800 4801
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4802 4803 4804
        self.graph = graph
        self._for_test = for_test

4805 4806 4807 4808
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4809 4810 4811
        Warns:
            The method only clones the graph structure, not its attributes.

4812 4813 4814
        Returns:
            IrGraph: A new and duplicated graph.
        """
4815
        g = self.graph.clone()
4816 4817
        return IrGraph(g, self._for_test)

4818
    def is_test(self):
4819 4820 4821
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4822 4823
        return self._for_test

W
WangZhen 已提交
4824
    def all_nodes(self):
4825 4826 4827
        """
        Return all nodes included in the graph as a set.
        """
4828
        return {IrNode(node) for node in self.graph.nodes()}
4829

4830
    def all_var_nodes(self):
4831 4832 4833
        """
        Return all variable nodes included in the graph as a set.
        """
4834
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4835

4836
    def all_persistable_nodes(self):
4837 4838 4839
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4840 4841
        persistable_nodes = set()
        for node in self.graph.nodes():
L
Ligoml 已提交
4842 4843 4844 4845 4846
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4847
                persistable_nodes.add(node)
4848
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4849

4850
    def all_op_nodes(self):
4851 4852 4853
        """
        Return all operator nodes included in the graph as a set.
        """
4854
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4855

4856 4857 4858 4859 4860 4861
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4862
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4863 4864 4865 4866 4867 4868 4869 4870 4871
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4872
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4884
            IrVarNode: the created persistable variable node.
4885
        """
4886 4887 4888 4889 4890
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4891
        return IrVarNode(self.graph.create_var_node(var_desc))
4892 4893

    def create_var_node(self, name, var_type, shape, var_dtype):
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4905
            IrVarNode: the created variable node.
4906 4907
        """

4908 4909 4910 4911
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4912
        return IrVarNode(self.graph.create_var_node(var_desc))
4913

4914 4915 4916 4917 4918 4919
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4920
    def create_var_node_from_desc(self, var_desc):
4921 4922 4923 4924 4925 4926 4927 4928
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4929
            IrVarNode: the created variable node.
4930
        """
4931
        return IrVarNode(self.graph.create_var_node(var_desc))
4932 4933

    def create_op_node(self, op_type, attrs, inputs, outputs):
4934 4935 4936 4937 4938 4939 4940
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4941
            outputs(dict): the outputs of the operator node.
4942 4943

        Returns:
4944
            IrOpNode: the created operator node.
4945
        """
4946 4947
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4948
        for attr, value in six.iteritems(attrs):
4949
            self._update_desc_attr(op_desc, attr, value)
4950
        for input_name, var_nodes in six.iteritems(inputs):
4951 4952
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4953 4954 4955
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4956
        for output_name, var_nodes in six.iteritems(outputs):
4957 4958
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
L
Ligoml 已提交
4959 4960 4961
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4962
        return IrOpNode(self.graph.create_op_node(op_desc))
4963 4964

    def create_op_node_from_desc(self, op_desc):
4965 4966 4967 4968 4969 4970 4971
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4972
            IrOpNode: the created operator node.
4973
        """
4974
        return IrOpNode(self.graph.create_op_node(op_desc))
4975 4976

    def update_input_link(self, old_input_node, new_input_node, op_node):
4977 4978 4979 4980
        """
        Update the input's link of a operator node.

        Args:
4981 4982 4983
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4984
        """
L
Ligoml 已提交
4985 4986 4987 4988 4989
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4990 4991 4992 4993
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4994
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4995

4996 4997 4998 4999 5000 5001 5002 5003 5004
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
L
Ligoml 已提交
5005 5006 5007 5008 5009
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5010 5011 5012 5013 5014 5015
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5016
    def link_to(self, node_in, node_out):
5017 5018 5019 5020
        """
        Connect two nodes.

        Args:
5021 5022
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5023
        """
5024
        assert node_in.node in self.graph.nodes(), (
L
Ligoml 已提交
5025 5026
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5027
        assert node_out.node in self.graph.nodes(), (
L
Ligoml 已提交
5028 5029
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5030 5031
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5032 5033

    def safe_remove_nodes(self, remove_nodes):
5034 5035 5036 5037 5038 5039 5040
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5041
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5042 5043 5044 5045
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5046 5047
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5048

Z
Zhen Wang 已提交
5049 5050 5051 5052 5053 5054 5055 5056
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5057
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5058 5059 5060 5061
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5062
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5063 5064 5065
                        ]
                    else:
                        var_nodes[each_var_name].append(
L
Ligoml 已提交
5066 5067
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5068 5069
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5070
    def has_circle(self):
5071 5072 5073 5074 5075 5076
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5077 5078 5079
        return core.has_circle(self.graph)

    def graph_num(self):
5080 5081 5082 5083 5084 5085
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5086 5087 5088
        return core.graph_num(self.graph)

    def topology_sort(self):
5089 5090 5091
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5092
        Notes: the `graph` can not contain a circle.
5093 5094

        Returns:
Z
Zhen Wang 已提交
5095
            list(IrNode): nodes in topology order.
5096
        """
5097
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5098
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5099 5100

    def build_adjacency_list(self):
5101 5102 5103 5104
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5105
            dict{IrNode: set(IrNode)}: the adjacency list.
5106
        """
5107 5108 5109 5110 5111
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5112

5113 5114 5115 5116 5117 5118 5119 5120
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5121
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5122 5123 5124 5125 5126
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5127 5128
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
L
Ligoml 已提交
5129 5130 5131 5132
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5133 5134
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
L
Ligoml 已提交
5135 5136 5137
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5138

5139
        remove_ctr_vars = set()
5140
        if remove_ctr_var:
5141
            for node in self.all_var_nodes():
5142 5143 5144
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5145 5146
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5147 5148
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5149 5150 5151 5152 5153 5154
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5155 5156 5157 5158
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5159 5160
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5161 5162 5163 5164 5165 5166 5167
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5168 5169 5170
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5171
        WARN: When the graph includes backward operator nodes, the
5172 5173 5174 5175 5176 5177
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5178
        convert_pass = core.get_pass('graph_to_program_pass')
5179 5180
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5181 5182 5183 5184
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5185 5186 5187 5188 5189 5190 5191 5192
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5193
        assert target_node is not None, (
L
Ligoml 已提交
5194 5195
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5196 5197
        return target_node

5198 5199 5200 5201
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5202 5203 5204 5205 5206
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5207
            desc.set_block_attr(name, val.desc)
5208
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5209
            desc.set_blocks_attr(name, [v.desc for v in val])
L
Ligoml 已提交
5210 5211 5212
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5213 5214 5215 5216 5217
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
5218
class Program(object):
D
dzhwinter 已提交
5219
    """
5220
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5221
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5222
    it will contain nested block.
5223

J
Jiabin Yang 已提交
5224 5225 5226
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5227

J
Jiabin Yang 已提交
5228
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5229
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5230 5231 5232 5233 5234 5235 5236
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5237
    **Notes**:
5238 5239 5240
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5241 5242

    Returns:
J
Jiabin Yang 已提交
5243
        Program: An empty Program.
D
dzhwinter 已提交
5244 5245

    Examples:
5246 5247
        .. code-block:: python

5248 5249 5250 5251
            import paddle
            import paddle.static as static

            paddle.enable_static()
5252

5253 5254 5255 5256 5257
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5258
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5259 5260 5261

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5262 5263 5264

    """

5265 5266
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5267 5268
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5269 5270
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5271
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5272
        self.__op_role_var = []
T
tangwei12 已提交
5273

5274 5275
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5276
        self._is_distributed = False
5277
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5278
        self._is_chief = False
5279 5280 5281
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5282
        self._endpoints = []
5283 5284 5285
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5286
        self._trainers_endpoints = []
5287
        # the distributed lookup table names
T
tangwei12 已提交
5288
        self._distributed_lookup_table = None
5289 5290 5291

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5292 5293
        self._use_lamb = False

5294 5295 5296
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5297

5298 5299 5300
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5301
        self._program_config = None
5302

H
hutuxian 已提交
5303 5304 5305
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5306 5307 5308
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5309 5310 5311
        # appending gradients times
        self._appending_grad_times = 0

5312 5313
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
L
Ligoml 已提交
5314 5315
            "__auto_checkpoint_program__"
        )
5316

5317 5318
        # compiled program, i.e. Graph
        self._graph = None
5319 5320
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5321

5322
    def _find_var_class_kwargs(self, new_desc):
5323 5324 5325 5326 5327 5328 5329 5330
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5331 5332 5333 5334
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
L
Ligoml 已提交
5335
            if idx > (len(self.blocks) - 1):
5336
                self._create_block()
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
L
Ligoml 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5388 5389 5390
                }

                if isinstance(old_var, Parameter):
L
Ligoml 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5408 5409
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
L
Ligoml 已提交
5410 5411 5412 5413 5414 5415
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5416 5417 5418 5419 5420 5421 5422

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5423
        assert block_num == self.desc.num_blocks()
5424 5425

        # clear old blocks and desc
5426 5427 5428 5429 5430 5431 5432 5433 5434
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5435

5436
        del desc
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5466 5467
                import paddle
                import paddle.static as static
5468

5469 5470 5471
                paddle.enable_static()

                prog = static.default_main_program()
5472 5473 5474 5475 5476
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5477
                prog1 = static.default_main_program()
5478 5479 5480 5481 5482 5483 5484 5485
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5486
    @property
5487
    def _op_role(self):
Y
yuyang18 已提交
5488 5489 5490 5491 5492 5493 5494 5495
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5496
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5497 5498 5499 5500
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5501 5502
        return self._current_role

5503 5504
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5505 5506 5507
        self._current_role = role

    @property
5508
    def _op_role_var(self):
Y
yuyang18 已提交
5509
        """
5510
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5511

5512
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5513 5514 5515

        Notes: This is a very low-level API. Users should not use it directly.
        """
5516
        return self.__op_role_var
Y
yuyang18 已提交
5517

5518
    @signature_safe_contextmanager
5519 5520 5521 5522 5523
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5524 5525 5526 5527
        try:
            yield
        finally:
            self._current_role = tmp_role
5528

S
rename  
sneaxiy 已提交
5529
    @signature_safe_contextmanager
W
Wu Yi 已提交
5530
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5531 5532 5533 5534 5535 5536 5537
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5538
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5539 5540 5541

        Examples:

5542
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5543
            >>> p, g = backward(...)
W
Wu Yi 已提交
5544
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5545 5546
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5547
        tmp_role = self._current_role
5548
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5549

Y
yuyang18 已提交
5550 5551
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5552
        self.__op_role_var = [
5553 5554 5555
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5556 5557 5558 5559 5560
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5561

S
rename  
sneaxiy 已提交
5562
    @signature_safe_contextmanager
X
Xin Pan 已提交
5563
    def _lr_schedule_guard(self, is_with_opt=False):
5564 5565 5566 5567 5568 5569 5570
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5571 5572 5573 5574
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5575 5576 5577

        Examples:

5578
            >>> import paddle.fluid as fluid
5579 5580 5581 5582
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5583 5584

        tmp_role = self._current_role
5585
        tmp_var = self.__op_role_var
5586

5587 5588
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5589 5590
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5591
        # TODO(typhoonzero): how to set target learning rate var
5592
        self.__op_role_var = []
5593 5594 5595 5596 5597
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5598

5599
    def __str__(self):
Y
yuyang18 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5629 5630
            import paddle
            import paddle.static as static
5631

5632 5633 5634
            paddle.enable_static()

            cur_program = static.Program()
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5646
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
L
Ligoml 已提交
5647 5648
            type(skip_op_callstack)
        )
5649 5650 5651
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5652
            program_str += '\n'
5653
        return program_str
Y
Yang Yang(Tony) 已提交
5654

F
fengjiayi 已提交
5655 5656 5657
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5658

J
Jiabin Yang 已提交
5659 5660 5661
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5662

J
Jiabin Yang 已提交
5663
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5664

H
haowang101779990 已提交
5665
        Returns:
J
Jiabin Yang 已提交
5666
            str: The debug string describe current Program.
Y
yuyang18 已提交
5667 5668

        Raises:
J
Jiabin Yang 已提交
5669
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5670

5671 5672 5673
        Examples:
            .. code-block:: python

5674 5675 5676 5677
                import paddle
                import paddle.static as static

                paddle.enable_static()
5678

5679 5680 5681
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5682
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5683
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5684
                print("program string without detail: {}".format(prog_string))
5685
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5686
        """
5687 5688 5689
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5690 5691
            type(throw_on_error)
        )
5692 5693 5694
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
L
Ligoml 已提交
5695 5696
            type(with_details)
        )
5697

F
fengjiayi 已提交
5698 5699 5700 5701 5702 5703
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5704
            proto = framework_pb2.ProgramDesc.FromString(
L
Ligoml 已提交
5705 5706
                six.binary_type(protostr)
            )
F
fengjiayi 已提交
5707 5708
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5709

W
Wu Yi 已提交
5710
    def _get_desc(self):
Y
yuyang18 已提交
5711 5712 5713 5714 5715 5716 5717
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5718 5719
        return self.desc

X
version  
Xin Pan 已提交
5720 5721 5722
    def _version(self):
        return self.desc._version()

5723
    def clone(self, for_test=False):
Y
yuyang18 已提交
5724
        """
5725
        .. note:::
L
Ligoml 已提交
5726 5727
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5728
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5729

5730
        Create a new Program with forward content of original one when ``for_test=True``.
5731
        Create a new Program as same as the original one when ``for_test=False``.
5732

5733
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5734 5735 5736
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5737

5738 5739
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5740 5741
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5742
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5743

J
Jiabin Yang 已提交
5744
        For Example:
5745
          ::
L
Luo Tao 已提交
5746

5747 5748 5749 5750 5751 5752
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5753
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5754
            loss = paddle.mean(pred)
5755
            # Here we use clone before Momentum
5756 5757
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5758
            optimizer.minimize(loss)
5759

J
Jiabin Yang 已提交
5760
        Args:
5761

5762 5763
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5764

J
Jiabin Yang 已提交
5765
        Returns:
5766
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5767

Y
yuyang18 已提交
5768 5769 5770

        Examples:

5771 5772 5773 5774 5775 5776 5777
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5794
            1. To clone a test program, the sample code is:
5795 5796 5797
                .. code-block:: python

                    import six
5798 5799 5800 5801 5802 5803
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5816 5817
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5818 5819 5820

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5821 5822 5823
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5824
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5825 5826
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5827
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5828 5829
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5830
                            test_program = train_program.clone(for_test=True)
5831
                    print_prog(test_program)
J
Jiabin Yang 已提交
5832 5833 5834 5835

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5836
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5837 5838 5839 5840
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5841 5842 5843
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5844 5845 5846
                            sgd.minimize(avg_loss)


5847
            2. The clone method can be avoid if you create program for training and program for testing individually.
5848 5849 5850
                .. code-block:: python

                    import six
5851 5852 5853 5854 5855 5856
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5868

5869
                    def network():
5870
                        img = static.data(name='image', shape=[None, 784])
5871
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5872 5873
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5874
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5875 5876
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5877 5878
                        return avg_loss

5879 5880 5881 5882 5883
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5884
                            avg_loss = network()
5885
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5886
                            sgd.minimize(avg_loss)
5887
                    # the test startup program is not used.
5888 5889
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5890 5891
                            avg_loss = network()
                    print_prog(test_program_2)
5892

5893
            The two code snippets above will generate and print same programs.
5894
        """
5895

T
tangwei12 已提交
5896
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5897 5898 5899
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5900
        pruned_origin_block_id_map = None
5901
        if for_test:
5902 5903
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
L
Ligoml 已提交
5904 5905
                self.desc
            )
5906 5907 5908 5909 5910 5911
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5912
        else:
5913
            p = Program()
G
gongweibao 已提交
5914 5915
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5916
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5917 5918 5919
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5920 5921

            p._current_role = self._current_role
5922
            p.__op_role_var = self.__op_role_var
5923
            p._appending_grad_times = self._appending_grad_times
5924 5925
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5926

T
tangwei12 已提交
5927
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5928
            # its desc.
W
Wu Yi 已提交
5929
            p._sync_with_cpp()
5930

W
Wu Yi 已提交
5931
        p._copy_param_info_from(self)
5932
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5933
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5934
        return p
5935

5936
    def _prune(self, targets):
Y
yuyang18 已提交
5937 5938 5939 5940 5941 5942 5943 5944
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5945
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5946 5947 5948 5949
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5950
        """
5951
        return self._prune_with_input([], targets)
5952 5953

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5954
        """
5955
        Prune operators and variables which are not needed to generate
L
Ligoml 已提交
5956 5957
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5958 5959 5960 5961 5962 5963 5964

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5965
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5966 5967 5968 5969 5970 5971
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5972
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5973 5974 5975
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5976 5977
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5978 5979
        if not isinstance(targets, list):
            targets = [targets]
5980 5981 5982

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5983 5984
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
L
Ligoml 已提交
5985 5986
                    "str, but received %s." % type(var)
                )
5987

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6004 6005 6006 6007
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6008 6009 6010
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
6011
                else:
6012 6013
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
L
Ligoml 已提交
6014 6015
                        "Variable or Operator, but received %s." % type(t)
                    )
6016 6017 6018 6019 6020 6021

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6022 6023 6024
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6025

6026 6027 6028 6029 6030 6031 6032 6033 6034
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6035
                        # Skip optimize op except for optimize op in targets,
6036 6037 6038 6039 6040
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6041

6042
                if target_op is not None:
6043 6044 6045
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6046

6047
        res = Program()
6048
        res.desc, pruned_origin_block_id_map = core.prune(
L
Ligoml 已提交
6049 6050
            self.desc, set(feeded_var_names), targets_idx
        )
M
minqiyang 已提交
6051 6052 6053
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6054
        res._sync_with_cpp()
6055 6056 6057 6058 6059

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6060 6061
        return res

X
Xin Pan 已提交
6062
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6063
        """
F
fengjiayi 已提交
6064 6065 6066 6067 6068
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6069
        3. change the :code:`is_test`
Y
yuyang18 已提交
6070 6071 6072
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6073
        Args:
X
Xin Pan 已提交
6074 6075
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6076

Y
yuyang18 已提交
6077 6078 6079 6080 6081 6082
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6083
        res = Program()
6084
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6085 6086 6087 6088

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6089
        if prune_read_op:
6090
            while True:
L
Ligoml 已提交
6091 6092 6093 6094
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6095 6096 6097 6098 6099 6100
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
6101
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
6102 6103

        # change all `is_test` attributes to True
M
minqiyang 已提交
6104
        for i in six.moves.range(res.desc.num_blocks()):
6105
            block = res.desc.block(i)
M
minqiyang 已提交
6106
            for j in six.moves.range(block.op_size()):
6107 6108
                op = block.op(j)
                if op.has_attr('is_test'):
6109
                    op._set_bool_attr('is_test', True)
6110 6111 6112
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
6113 6114 6115
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
6116
        res._sync_with_cpp()
6117 6118
        return res

6119
    def _remove_training_info(self, clip_extra=True):
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

6139 6140
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6141
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6142

6143 6144 6145 6146 6147
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6148 6149
            if not clip_extra:
                continue
6150 6151 6152 6153
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6154 6155 6156

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6170 6171 6172
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6186 6187 6188
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
6189

L
Ligoml 已提交
6190 6191 6192 6193 6194 6195 6196
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6197 6198
                )
                quant_attrs = [
L
Ligoml 已提交
6199 6200 6201 6202 6203 6204 6205
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6206
                ]
6207 6208 6209
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
                remove_attr_list = []
6210 6211 6212 6213 6214 6215
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6216
                    if len(extra_attrs_map) > 0:
6217
                        if name in common_clipped_attrs_list:
6218
                            op.remove_attr(name)
6219
                        continue
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6230 6231
        return res

6232 6233
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6234
        """
6235
        .. note::
L
Ligoml 已提交
6236
            1. All information about parameters will be lost after serialization;
6237
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6238

6239 6240
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6241

J
Jiabin Yang 已提交
6242
        Args:
Y
yuyang18 已提交
6243

J
Jiabin Yang 已提交
6244
            binary_str_type (str): the binary prootbuf string.
6245

J
Jiabin Yang 已提交
6246 6247
        Returns:
            Program: A deserialized Program.
6248 6249 6250 6251

        Examples:
            .. code-block:: python

6252 6253 6254 6255
                import paddle
                import paddle.static as static

                paddle.enable_static()
6256

6257 6258 6259 6260
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6261

6262
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6263

6264
                    z = paddle.matmul(x=x, y=y)
6265

6266 6267
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6268

6269
                    print(static.default_main_program())
6270
                    print(prog_restored)
Y
yuyang18 已提交
6271
        """
6272 6273
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
6274
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
6275
        p._sync_with_cpp()
6276
        return p
Y
Yu Yang 已提交
6277

6278
    @staticmethod
6279
    def _construct_from_desc(desc):
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6295 6296
    @property
    def random_seed(self):
Y
yuyang18 已提交
6297
        """
J
Jiabin Yang 已提交
6298
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6299 6300
        the random seed from random device.

L
Ligoml 已提交
6301
        .. note::
6302
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6303 6304 6305

        Returns:
            int64: Random seed in current Program
6306

6307 6308 6309 6310

        Examples:
            .. code-block:: python

6311 6312 6313
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6314

6315 6316 6317
                paddle.enable_static()

                prog = static.default_main_program()
6318
                random_seed = prog.random_seed
6319
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6320 6321 6322
                print(random_seed)
                ## 0
                ## the default random seed is 0
6323

6324
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6325
                prog.random_seed = 1
6326
                z_var = F.dropout(x_var, 0.7)
6327

6328
                print(prog.random_seed)
6329 6330
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6331
        """
D
dzhwinter 已提交
6332 6333
        return self._seed

Q
qiaolongfei 已提交
6334 6335
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6336
        """
6337 6338
        The number of :ref:`api_guide_Block_en`  in this Program.

L
Ligoml 已提交
6339
        .. note::
6340
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6341 6342 6343

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6344

6345 6346 6347 6348

        Examples:
            .. code-block:: python

6349 6350 6351 6352
                import paddle
                import paddle.static as static

                paddle.enable_static()
6353

6354
                prog = static.default_main_program()
6355 6356
                num_blocks = prog.num_blocks
                print(num_blocks)
6357

6358 6359
                # print result:
                # 1
Y
yuyang18 已提交
6360
        """
Q
qiaolongfei 已提交
6361 6362
        return self.desc.num_blocks()

D
dzhwinter 已提交
6363 6364 6365
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6366 6367
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
L
Ligoml 已提交
6368 6369
                % type(seed)
            )
D
dzhwinter 已提交
6370 6371
        self._seed = seed

Y
Yu Yang 已提交
6372
    def __repr__(self):
6373
        return self.__str__()
6374

Y
Yu Yang 已提交
6375
    def global_block(self):
Y
yuyang18 已提交
6376
        """
6377 6378
        .. note::
            This API has no effect in Dygraph mode.
6379 6380 6381

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6382 6383
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6384

6385 6386 6387 6388

        Examples:
            .. code-block:: python

6389 6390 6391 6392
                import paddle
                import paddle.static as static

                paddle.enable_static()
6393

6394
                prog = static.default_main_program()
6395 6396
                gb_block = prog.global_block()
                print(gb_block)
6397

Y
yuyang18 已提交
6398
        """
Y
Yu Yang 已提交
6399 6400
        return self.blocks[0]

Q
Qiao Longfei 已提交
6401
    def block(self, index):
Y
yuyang18 已提交
6402
        """
6403 6404
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6405

6406 6407
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6408 6409
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6410

J
Jiabin Yang 已提交
6411 6412
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6413 6414 6415 6416

        Examples:
            .. code-block:: python

6417 6418 6419 6420
                import paddle
                import paddle.static as static

                paddle.enable_static()
6421

6422
                prog = static.default_main_program()
6423 6424
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6425
        """
Q
Qiao Longfei 已提交
6426 6427
        return self.blocks[index]

Y
Yu Yang 已提交
6428
    def current_block(self):
Y
yuyang18 已提交
6429
        """
6430 6431
        .. note::
            This API has no effect in Dygraph mode.
6432

J
Jiabin Yang 已提交
6433 6434
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6435

J
Jiabin Yang 已提交
6436 6437
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6438

6439 6440 6441
        Examples:
            .. code-block:: python

6442 6443 6444 6445
                import paddle
                import paddle.static as static

                paddle.enable_static()
6446

6447
                prog = static.default_main_program()
6448 6449
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6450
        """
Y
Yu Yang 已提交
6451 6452
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6453
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6454 6455 6456 6457 6458
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6459

Y
yuyang18 已提交
6460 6461 6462 6463 6464
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6465
        new_block_idx = len(self.blocks)
L
Ligoml 已提交
6466 6467 6468 6469 6470
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6471
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6472 6473 6474 6475
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6476
    def _rollback(self):
Y
yuyang18 已提交
6477 6478 6479 6480 6481
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6482 6483
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6484
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6495 6496 6497
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6498
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6499

W
Wu Yi 已提交
6500
    def _copy_param_info_from(self, other):
6501
        """
6502
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6503

Y
yuyang18 已提交
6504 6505 6506
        Notes: This is a very low level API. Users should not invoke it
        directly.

6507 6508 6509 6510 6511 6512 6513
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6514 6515
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6516 6517
                % type(other)
            )
6518

W
Wu Yi 已提交
6519
        self.global_block()._copy_param_info_from(other.global_block())
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6532 6533
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6534 6535
                % type(other)
            )
6536 6537
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6538
        self._parameters_on_pservers = other._parameters_on_pservers
6539
        self._endpoints = other._endpoints
6540
        self._ps_endpoint = other._ps_endpoint
6541 6542
        self._distributed_lookup_table = other._distributed_lookup_table

6543
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6544 6545
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6546

Y
yuyang18 已提交
6547 6548 6549
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6550 6551
        Args:
            other(Program): Other program
6552
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
L
Ligoml 已提交
6553 6554
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6555
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6556 6557 6558 6559 6560

        Returns:
            None
        """
        if not isinstance(other, Program):
6561 6562
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
L
Ligoml 已提交
6563 6564
                % type(other)
            )
F
fengjiayi 已提交
6565

6566 6567
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
L
Ligoml 已提交
6568
                i: i for i in six.moves.range(self.desc.num_blocks())
6569
            }
6570 6571 6572

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6573 6574
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6575
            for var in list(block.vars.values()):
6576 6577 6578 6579 6580 6581 6582
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6583

6584
    def list_vars(self):
Y
yuyang18 已提交
6585
        """
6586
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6587

J
Jiabin Yang 已提交
6588
        Returns:
6589
            iterable Tensors: The Generator will yield every Tensor in this program.
6590 6591 6592 6593

        Examples:
            .. code-block:: python

6594 6595
                import paddle
                import paddle.static as static
6596

6597 6598 6599 6600 6601
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6602 6603
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6604

6605 6606
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6607
        """
6608
        for each_block in self.blocks:
6609
            for each_var in list(each_block.vars.values()):
6610 6611
                yield each_var

6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6622 6623 6624 6625
                import paddle
                import paddle.static as static

                paddle.enable_static()
6626

6627 6628
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6629
                hidden = static.nn.fc(x=data, size=10)
6630 6631
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6632 6633 6634 6635 6636 6637 6638

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6639 6640
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6651 6652 6653 6654 6655 6656 6657 6658 6659
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6660 6661 6662
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6663 6664
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
L
Ligoml 已提交
6665
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6693
        # can not be imported at the begainning of this file.
6694 6695
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
L
Ligoml 已提交
6696

6697 6698
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
L
Ligoml 已提交
6699 6700 6701 6702
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6703 6704 6705 6706 6707

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6708 6709
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
L
Ligoml 已提交
6710 6711 6712
                    type(mode)
                )
            )
6713 6714 6715 6716 6717

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
L
Ligoml 已提交
6718 6719 6720 6721 6722
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
L
Ligoml 已提交
6741 6742 6743 6744
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6745 6746 6747 6748 6749 6750 6751 6752

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
L
Ligoml 已提交
6753 6754 6755 6756
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6757 6758 6759 6760 6761 6762
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
L
Ligoml 已提交
6763
        Set parameters and persistable buffers in state_dict to program.
6764
        An exception will throw if shape or dtype of the parameters is not match.
L
Ligoml 已提交
6765

6766 6767 6768 6769
        .. note::
            This function MUST called after run start_up_program

        Args:
L
Ligoml 已提交
6770
            state_dict(dict): the dict store parameters and persistable buffers.
6771 6772
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
L
Ligoml 已提交
6773
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6774 6775
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
L
Ligoml 已提交
6776

6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
L
Ligoml 已提交
6806 6807 6808
                    type(state_dict)
                )
            )
6809 6810

        vars_dict = {var.name: var for var in self.list_vars()}
L
Ligoml 已提交
6811 6812 6813
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
L
Ligoml 已提交
6825 6826
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6827 6828
                except TypeError as err:
                    warnings.warn(
L
Ligoml 已提交
6829 6830
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6831
            else:
6832
                warnings.warn(
L
Ligoml 已提交
6833 6834 6835 6836 6837 6838
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6839

Y
Yu Yang 已提交
6840

6841
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6842
class Parameter(Variable):
6843
    """
6844
    Parameter is derived from Variable. A parameter is a persistable
6845
    Variable, and will be updated by optimizers after each iteration.
6846
    The training of a neural network is essentially the updating of
6847 6848
    its parameters.

6849
    Relative to a general Variable, a Parameter has several its own
6850 6851
    member variables:

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
L
Ligoml 已提交
6862
        need_clip (bool): Whether the parameter gradient need to be cliped
6863
            in optimizer. Default is True.
6864 6865
    """

L
Ligoml 已提交
6866 6867 6868 6869 6870 6871 6872 6873
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6874 6875 6876 6877 6878
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6879
        if len(shape) == 0:
6880
            raise ValueError(
L
Ligoml 已提交
6881 6882
                "The dimensions of shape for Parameter must be greater than 0"
            )
Y
Yu Yang 已提交
6883 6884 6885

        for each in shape:
            if each < 0:
6886 6887
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6900 6901 6902 6903
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6904 6905
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6906
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6907

6908 6909
        self.need_clip = kwargs.get('need_clip', True)

6910 6911
        self.is_distributed = False

6912 6913
        self.is_parameter = True

F
fengjiayi 已提交
6914
    def __str__(self):
6915
        return self._to_readable_code()
F
fengjiayi 已提交
6916

F
update  
fengjiayi 已提交
6917 6918 6919
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6920

F
update  
fengjiayi 已提交
6921 6922 6923 6924 6925 6926 6927 6928
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6929 6930 6931 6932 6933 6934 6935 6936 6937
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6938
        """
6939
        assert isinstance(throw_on_error, bool) and isinstance(
L
Ligoml 已提交
6940 6941
            with_details, bool
        )
F
update  
fengjiayi 已提交
6942 6943
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
L
Ligoml 已提交
6944 6945 6946 6947 6948 6949 6950
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6951
            for attr_name in additional_attr:
L
Ligoml 已提交
6952 6953 6954 6955
                res_str += "%s: %s\n" % (
                    attr_name,
                    cpt.to_text(getattr(self, attr_name)),
                )
F
update  
fengjiayi 已提交
6956 6957
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6958 6959 6960 6961
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6962

6963 6964
class ParamBase(core.VarBase):
    """
L
Ligoml 已提交
6965 6966
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6967
    after each iteration.
6968 6969 6970
    The training of a neural network is essentially the updating of
    its ParamBase.

6971
    Relative to a general Tensor, a ParamBase has several its own
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
L
Ligoml 已提交
6984
        need_clip (bool): Whether the parameter gradient need to be cliped
6985
            in optimizer. Default is True.
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
6997 6998
                "The dimensions of shape for Parameter must be greater than 0"
            )
6999 7000 7001 7002 7003

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7004 7005
                    % list(shape)
                )
7006 7007 7008 7009 7010 7011 7012

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

L
Ligoml 已提交
7013 7014 7015 7016 7017 7018 7019
        super(ParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7020

7021 7022
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7023 7024 7025 7026 7027 7028 7029

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7030 7031
        self.need_clip = kwargs.get('need_clip', True)

7032
        self.is_distributed = kwargs.get('is_distributed', False)
7033
        # self.block = default_main_program().global_block()
7034

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7046 7047
                type(trainable),
            )
7048

7049
    def __str__(self):
7050
        """
7051
        Convert a ParamBase object to a readable string.
7052

7053
        Returns(str): A readable string.
7054 7055 7056 7057

        Examples:
            .. code-block:: python

7058
                import paddle
7059 7060 7061 7062 7063 7064 7065
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7066
        """
7067
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7068 7069
            tensor=super(ParamBase, self).__str__()
        )
7070

7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7082

7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7101 7102 7103 7104
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7105 7106 7107 7108 7109 7110
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7111
    _core_eager_eagertensor = core.eager.Tensor
7112 7113 7114 7115 7116 7117
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
L
Ligoml 已提交
7118 7119
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
L
Ligoml 已提交
7137
        need_clip (bool): Whether the parameter gradient need to be cliped
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
L
Ligoml 已提交
7150 7151
                "The dimensions of shape for Parameter must be greater than 0"
            )
7152 7153 7154 7155 7156

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
L
Ligoml 已提交
7157 7158
                    % list(shape)
                )
7159 7160 7161 7162 7163 7164 7165

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7166 7167 7168
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

L
Ligoml 已提交
7169 7170 7171 7172 7173 7174 7175
        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7190 7191 7192
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7193 7194

    def set_init_func(self, obj):
7195
        self._init_func = obj
7196 7197 7198

    @dygraph_only
    def initialize(self):
L
Ligoml 已提交
7199 7200 7201
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7202
        self._init_func()
7203
        # clear function handle to release resource
7204
        self._init_func = None
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
L
Ligoml 已提交
7217 7218
                type(trainable),
            )
7219

7220 7221 7222 7223
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
L
Ligoml 已提交
7224 7225 7226
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7227 7228
        self._init_op_creator(block)

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
L
Ligoml 已提交
7248 7249
            tensor=super(EagerParamBase, self).__str__()
        )
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7285 7286
        return new_param

7287 7288 7289
    __repr__ = __str__


Y
Yu Yang 已提交
7290
# program is a global instance.
Y
Yu Yang 已提交
7291 7292
_main_program_ = Program()
_startup_program_ = Program()
7293
_startup_program_._is_start_up_program_ = True
7294

7295

7296
def default_startup_program():
Y
Yu Yang 已提交
7297
    """
Y
yuyang18 已提交
7298 7299
    Get default/global startup program.

7300
    The :code:`paddle.nn` function will append the initialization operators into startup program.
L
Ligoml 已提交
7301
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7302

7303 7304
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7305

7306 7307
    Returns:
        Program: current default startup program.
7308

L
Ligoml 已提交
7309
    Returns type:
7310 7311 7312 7313

    Examples:
        .. code-block:: python

7314
            import paddle
7315

7316
            paddle.enable_static()
7317 7318 7319 7320
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7321
    """
Y
Yu Yang 已提交
7322
    return _startup_program_
7323

7324

7325
def default_main_program():
Y
Yu Yang 已提交
7326
    """
L
Ligoml 已提交
7327
    This API can be used to get ``default main program`` which store the
7328
    descriptions of Ops and tensors.
T
tangwei12 已提交
7329

L
Ligoml 已提交
7330 7331
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7332

L
Ligoml 已提交
7333
    The ``default main program`` is the default value for ``Program`` parameter in
7334
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7335
    :code:`default_main_program` when the program is not specified.
7336

7337
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7338

Y
Yu Yang 已提交
7339
    Returns:
7340
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7341 7342 7343 7344

    Examples:
        ..  code-block:: python

7345
            import paddle
7346

7347
            paddle.enable_static()
7348
            # Sample Network:
7349 7350 7351
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7352

7353 7354 7355
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7356
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7357
    """
Y
Yu Yang 已提交
7358
    return _main_program_
Y
Yu Yang 已提交
7359 7360 7361 7362 7363


def switch_main_program(program):
    """
    Switch the main program to a new program.
7364

Y
Yu Yang 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7379
    Switch the startup program to a new program
Y
Yu Yang 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7392
@signature_safe_contextmanager
Y
Yu Yang 已提交
7393 7394
def program_guard(main_program, startup_program=None):
    """
7395 7396
    :api_attr: Static Graph

7397 7398 7399
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7400

G
guofei 已提交
7401
    Args:
7402
        main_program(Program): New main program inside ``with`` statement.
L
Ligoml 已提交
7403 7404
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7405 7406 7407
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7408
    Examples:
7409
       .. code-block:: python
T
tangwei12 已提交
7410

7411
          import paddle
Y
yuyang18 已提交
7412

7413 7414 7415 7416 7417
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7418
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7419 7420 7421

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7422

Y
Yu Yang 已提交
7423
    Examples:
7424
       .. code-block:: python
Y
yuyang18 已提交
7425

7426
          import paddle
7427

7428 7429 7430 7431 7432
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7433

Y
Yu Yang 已提交
7434
    """
7435
    from .data_feeder import check_type
L
Ligoml 已提交
7436 7437 7438 7439

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7440 7441
    main_program = switch_main_program(main_program)
    if startup_program is not None:
L
Ligoml 已提交
7442 7443 7444 7445 7446 7447
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7448 7449
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7450
        startup_program = switch_startup_program(startup_program)
7451 7452 7453 7454 7455 7456
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7457 7458


W
Wu Yi 已提交
7459
def _get_var(name, program=None):
X
xuwei06 已提交
7460
    """
Y
yuyang18 已提交
7461
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7462

X
xuwei06 已提交
7463 7464 7465
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7466
        If None, default_global_program() will be used.
X
xuwei06 已提交
7467 7468 7469 7470 7471 7472 7473

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7474
    assert isinstance(program, Program)
X
xuwei06 已提交
7475 7476

    return program.global_block().var(name)
7477 7478


S
rename  
sneaxiy 已提交
7479
@signature_safe_contextmanager
L
lujun 已提交
7480 7481
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7482
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7483
    _dygraph_tracer_ = tracer
7484
    core._switch_tracer(tracer)
M
minqiyang 已提交
7485

7486 7487 7488
    try:
        yield
    finally:
7489 7490
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7491 7492


S
rename  
sneaxiy 已提交
7493
@signature_safe_contextmanager
L
lujun 已提交
7494
def _dygraph_place_guard(place):
7495 7496 7497
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7498 7499
    _set_dygraph_tracer_expected_place(place)

7500 7501 7502
    try:
        yield
    finally:
7503
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7504
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7505 7506


7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
L
Ligoml 已提交
7517

7518 7519
    Note:
        The API only supports static mode.
7520 7521 7522 7523

    A context manager that specifies the device on which the OP will be placed.

    Args:
7524
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
L
Ligoml 已提交
7525
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7526 7527 7528 7529 7530 7531 7532
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
L
Ligoml 已提交
7533

7534
        .. code-block:: python
L
Ligoml 已提交
7535

7536
            # required: gpu
Z
Zhang Ting 已提交
7537
            import paddle
7538

Z
Zhang Ting 已提交
7539 7540 7541
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7542
            if support_gpu:
Z
Zhang Ting 已提交
7543
                place = paddle.CUDAPlace(0)
7544 7545

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7546 7547 7548
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7549

Z
Zhang Ting 已提交
7550
            with paddle.static.device_guard("cpu"):
7551
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7552 7553
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7554
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7555
                out = paddle.reshape(data1, shape=shape)
7556

Z
Zhang Ting 已提交
7557 7558
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7559 7560 7561
            result = exe.run(fetch_list=[out])
    """

7562 7563 7564 7565 7566
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7567
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7568
        raise ValueError(
7569
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
L
Ligoml 已提交
7570 7571
            "when there is no need to specify device. But received %s" % device
        )
7572 7573
    if index:
        device = ":".join([device, index])
7574
    pre_device = switch_device(device)
7575 7576 7577 7578
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7579 7580


7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
L
Ligoml 已提交
7601 7602
    assert (
        not _non_static_mode()
7603
    ), "cuda_graph_guard only works under static mode"
L
Ligoml 已提交
7604 7605
    assert (
        core.is_compiled_with_cuda()
7606 7607 7608 7609 7610 7611 7612 7613
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7614 7615 7616
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7617
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7618 7619 7620 7621 7622 7623 7624

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7625 7626
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7627 7628 7629 7630
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7631 7632
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7633 7634
        else:
            raise ValueError(
L
Ligoml 已提交
7635 7636
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7637 7638 7639 7640 7641


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7642
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7653
            import paddle
G
guofei 已提交
7654 7655

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7656
            res = paddle.get_flags(flags)
G
guofei 已提交
7657 7658 7659 7660 7661 7662
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
L
Ligoml 已提交
7663
            if _global_flags().is_public(key):
7664
                value = _global_flags()[key]
G
guofei 已提交
7665 7666 7667 7668
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
L
Ligoml 已提交
7669 7670 7671
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7672
    elif isinstance(flags, str):
L
Ligoml 已提交
7673
        if _global_flags().is_public(flags):
7674
            value = _global_flags()[flags]
G
guofei 已提交
7675 7676 7677 7678
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
L
Ligoml 已提交
7679 7680
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7681 7682 7683
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7684 7685 7686 7687 7688 7689


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
L
Ligoml 已提交
7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7704 7705 7706 7707
        return place

    if not isinstance(place, str):
        raise ValueError(
L
Ligoml 已提交
7708 7709
            "place only support string which is 'Place' and so on."
        )
7710 7711

    place = place.lower()
L
Ligoml 已提交
7712
    if place == "cpu":
7713
        return core.CPUPlace()
7714

L
Ligoml 已提交
7715
    if place == "device":
7716 7717
        return core.Place()

7718
    # GPU
7719 7720 7721 7722
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
L
Ligoml 已提交
7723 7724 7725
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7726 7727 7728 7729 7730 7731 7732 7733 7734
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7735 7736

    # XPU
7737 7738 7739 7740
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
L
Ligoml 已提交
7741 7742 7743
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7744 7745 7746 7747
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7748 7749 7750 7751 7752 7753

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
L
Ligoml 已提交
7754 7755 7756
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7757 7758 7759 7760 7761
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7762 7763 7764 7765 7766
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
L
Ligoml 已提交
7767 7768 7769
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7770 7771 7772 7773 7774
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7775 7776 7777 7778 7779
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
L
Ligoml 已提交
7780 7781 7782
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7783 7784 7785 7786 7787
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7788
    raise ValueError(
L
Ligoml 已提交
7789 7790 7791 7792
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret