conv_bn_fuse_pass.cc 17.2 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

P
Pei Yang 已提交
19
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
20 21
#include "paddle/fluid/platform/enforce.h"

W
wanghuancoder 已提交
22 23 24 25 26 27 28
namespace paddle {
namespace framework {
class LoDTensor;
class Scope;
}  // namespace framework
}  // namespace paddle

S
Sylwester Fraczek 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
59
                                LoDTensor* eltwise_y_in_tensor,   //
60
                                float epsilon, const std::string& conv_type) {
61 62 63 64 65 66 67
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
68
  // Re-compute bias of conv2d from BN
69 70 71 72 73 74
  PADDLE_ENFORCE_EQ(
      eltwise_y_in_tensor->dims(), bn_bias_tensor.dims(),
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
75 76 77 78 79 80

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

81 82 83 84 85 86 87 88 89
  ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
                                       scale_tensor->numel(), 1);
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
      variance_tensor->numel(), 1);
  ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
                                      mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
                                         bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
90

91 92 93 94
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
95
  for (int i = 0; i < variance_tensor->numel(); i++) {
96 97 98 99 100 101
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]), true,
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
102
  }
103 104 105
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
      eltwise_y_in_tensor->numel(), 1);
106

107 108
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
109
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
110 111 112 113 114 115
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]), true,
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
116
  }
S
Sylwester Fraczek 已提交
117 118

  // Re-compute weight of conv2d from BN
119 120
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
121 122 123 124 125 126 127 128 129 130 131 132 133 134
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
    auto weights_shape_2d = flatten_to_2d(weights_shape, 1);
135

136 137
    EigenMatrixArrayMap weights_array_2d(weights_data, weights_shape_2d[0],
                                         weights_shape_2d[1]);
138

139 140
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
141 142
}

143
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
144 145
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
146
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
147 148

  auto* scope = param_scope();
149 150
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
151 152 153 154 155 156

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
157
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
158
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
159
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
160 161 162 163

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
164
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
165 166 167 168

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
169 170
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
171 172
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
173 174 175
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
176
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
177 178 179
      return;
    }

180 181 182 183
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
184 185
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
186
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
187 188 189
    eltwise_y_in_desc.SetShape(framework::vectorize(bn_bias_tensor->dims()));
    eltwise_y_in_desc.SetDataType(bn_bias_tensor->type());
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
190
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
191 192 193 194 195 196 197 198 199 200
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
201 202
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
203
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
204
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
205
                               epsilon, conv_type());
S
Sylwester Fraczek 已提交
206

W
Wojciech Uss 已提交
207 208 209 210 211 212 213 214 215
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
      bool has_bias = std::find(input_names.begin(), input_names.end(),
                                "Bias") != input_names.end();
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
216 217 218
        PADDLE_ENFORCE_EQ(
            conv_bias_names.size(), 1UL,
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
219 220
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
221 222 223 224 225 226 227
        PADDLE_ENFORCE_EQ(
            conv_bias_tensor->dims(), eltwise_y_in_tensor->dims(),
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
228 229 230 231 232 233 234 235 236 237 238 239

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
      GraphSafeRemoveNodes(
240
          graph,
W
Wojciech Uss 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
          {conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
           bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

256 257 258
      GraphSafeRemoveNodes(graph, {bn_scale, bn_bias, bn_mean, bn_variance,
                                   batch_norm, bn_mean_out, bn_variance_out,
                                   bn_saved_mean, bn_saved_variance});
W
Wojciech Uss 已提交
259 260 261 262 263 264

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
265 266
  };

267
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
268 269 270 271

  AddStatis(found_conv_bn_count);
}

272
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
273 274
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
275
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
276 277

  auto* scope = param_scope();
278 279
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
280 281 282 283 284 285

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
286
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
287
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
288
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
289 290 291 292

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
293
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
316 317
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
      eltwise_y_in_desc.SetShape(
          framework::vectorize(eltwise_y_in_tensor->dims()));
      eltwise_y_in_desc.SetDataType(eltwise_y_in_tensor->type());
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
      TensorCopy(*eltwise_y_in_tensor, platform::CPUPlace(),
                 eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor_ex,
                                 epsilon, conv_type());
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor,
                                 epsilon, conv_type());
    }
S
Sylwester Fraczek 已提交
360 361 362 363 364 365

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));

    GraphSafeRemoveNodes(
366
        graph,
S
Sylwester Fraczek 已提交
367 368 369 370 371 372 373 374
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

375
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
376 377 378 379 380 381 382 383 384 385 386

  AddStatis(found_conv_bn_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
387 388 389 390
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
391 392 393 394
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
395 396 397
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
398
            .LE("conv2d", 1)
P
Pei Yang 已提交
399 400 401 402
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
403
            .LE("conv2d", 1)
404
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
405
            .EQ("batch_norm", 0));