gru_op.cc 23.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_op.h"
16

17
#include <memory>
18
#include <string>
19

20
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
21 22
#include "paddle/phi/kernels/funcs/detail/gru_cpu_kernel.h"
#include "paddle/phi/kernels/funcs/detail/gru_kernel.h"
T
tensor-tang 已提交
23 24

DECLARE_int32(paddle_num_threads);
G
guosheng 已提交
25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
36 37 38
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU");
    OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU");
39 40 41
    bool is_test = ctx->Attrs().Get<bool>("is_test");
    if (!is_test) {
      OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU");
42 43 44
      OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"),
                     "Output",
                     "BatchResetHiddenPrev",
45
                     "GRU");
46 47
      OP_INOUT_CHECK(
          ctx->HasOutput("BatchHidden"), "Output", "BatchHidden", "GRU");
48
    }
G
guosheng 已提交
49 50 51 52
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
53
    if (ctx->IsRuntime()) {
54 55
      PADDLE_ENFORCE_EQ(input_size,
                        frame_size * 3,
56 57 58 59
                        platform::errors::InvalidArgument(
                            "The second dimension of Input(Input) must be 3 "
                            "times of frame_size in GRUOp, but received %d "
                            "(Input) vs %d (frame_size).",
60 61
                            input_size,
                            frame_size));
62
    }
G
guosheng 已提交
63
    PADDLE_ENFORCE_EQ(
64 65
        weight_dims[1],
        frame_size * 3,
66 67 68
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
69 70 71 72
            weight_dims[0],
            weight_dims[1],
            frame_size,
            frame_size * 3));
73
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
74
      auto h0_dims = ctx->GetInputDim("H0");
75
      PADDLE_ENFORCE_EQ(
76 77
          h0_dims[1],
          frame_size,
78 79 80
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
81 82
              h0_dims[1],
              frame_size));
G
guosheng 已提交
83
    }
84
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
85 86 87
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
88
      PADDLE_ENFORCE_EQ(
89 90
          bias_height,
          1,
91 92 93
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
94 95 96
              bias_height,
              bias_width,
              frame_size * 3));
97
      PADDLE_ENFORCE_EQ(
98 99
          bias_width,
          frame_size * 3,
100 101 102
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
103 104 105
              bias_height,
              bias_width,
              frame_size * 3));
G
guosheng 已提交
106
    }
107 108 109 110 111
    if (!is_test) {
      ctx->SetOutputDim("BatchGate", input_dims);
      ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
      ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
    }
G
guosheng 已提交
112 113 114 115 116 117 118
    ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
    ctx->ShareLoD("Input", "Hidden");
  }
};

class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
G
guosheng 已提交
120
    AddInput("Input",
121
             "(LoDTensor) The first input is a LodTensor, which supports "
G
guosheng 已提交
122 123 124 125
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
126
             "(Tensor, optional) The initial hidden state is an optional "
G
guosheng 已提交
127
             "input. This is a tensor with shape (N x D), where N is the "
128 129
             "batch size, D is the hidden size.")
        .AsDispensable();
G
guosheng 已提交
130 131
    AddInput(
        "Weight",
132 133 134 135 136
        "(Tensor) The learnable hidden-hidden weight matrix with shape "
        "(D x 3D), where D is the hidden size. The elements continuous in "
        "memory can be divided into two parts. The first part are weights of "
        "the update gate and reset gate with shape (D x 2D), and the second "
        "part are weights of output candidate with shape (D x D).");
G
guosheng 已提交
137
    AddInput("Bias",
138 139 140
             "(Tensor, optional) Bias vector with shape (1 x 3D) concating "
             "bias of the update gate, reset gate and output candidate.")
        .AsDispensable();
G
guosheng 已提交
141
    AddOutput("BatchGate",
142 143 144 145 146 147 148
              "(LoDTensor) To compute with batches, sequence data will be "
              "reorganized into several successive batches each containing "
              "data from the same time step. The LoDTensor BatchGate contains "
              "the update gate, reset gate and output candidate values "
              "organized in batches. The LoD size is 2. The first LoD contains "
              "the batch offsets and the second LoD contains the indexes in "
              "the raw sequence data.")
149 150
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
151 152
    AddOutput(
        "BatchResetHiddenPrev",
T
tianshuo78520a 已提交
153
        "(LoDTensor) The reset hidden state LoDTensor organized in batches. "
154 155
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
156 157
        .AsIntermediate()
        .AsExtra();
G
guosheng 已提交
158 159
    AddOutput(
        "BatchHidden",
160 161 162
        "(LoDTensor) The hidden state LoDTensor organized in batches.  "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.")
163 164
        .AsIntermediate()
        .AsExtra();
165 166 167 168 169
    AddOutput(
        "Hidden",
        "(LoDTensor) the hidden state LoDTensor organized in sequences. "
        "This LoDTensor is a matrix with shape (T X D) and has the same LoD "
        "with `BatchGate`.");
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179
    AddAttr<std::string>("activation",
                         "(string, default tanh) "
                         "The activation type used for output candidate {h}_t.")
        .SetDefault("tanh");
    AddAttr<std::string>(
        "gate_activation",
        "(string, default sigmoid) "
        "The activation type used in update gate and reset gate.")
        .SetDefault("sigmoid");
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
180
                  "(bool, default: False) "
G
guosheng 已提交
181 182
                  "whether to compute reversed GRU.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
183 184 185 186
    AddAttr<bool>("origin_mode",
                  "bool"
                  "use origin mode in article https://arxiv.org/abs/1412.3555")
        .SetDefault(false);
G
guosheng 已提交
187
    AddComment(R"DOC(
188 189
GRU Operator implements part calculations of the complete GRU as following:

K
kavyasrinet 已提交
190 191 192 193
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
194
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kavyasrinet 已提交
195
$$
196

K
kavyasrinet 已提交
197
@note To implement the complete GRU, fully-connected operator must be used
198
before to feed xu, xr and xc as the Input of GRU operator.
G
guosheng 已提交
199 200 201 202 203 204 205 206 207
)DOC");
  }
};

class GRUGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
208 209
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad");
210 211 212 213 214
    OP_INOUT_CHECK(
        ctx->HasInput("BatchGate"), "Input", "BatchGate", "GRU@Grad");
    OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"),
                   "Input",
                   "BatchResetHiddenPrev",
215
                   "GRU@Grad");
216 217
    OP_INOUT_CHECK(
        ctx->HasInput("BatchHidden"), "Input", "BatchHidden", "GRU@Grad");
218
    OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad");
219 220 221 222
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")),
                   "Input",
                   framework::GradVarName("Hidden"),
                   "GRU@Grad");
223

G
guosheng 已提交
224 225 226 227 228 229
    auto input_dims = ctx->GetInputDim("Input");
    auto weight_dims = ctx->GetInputDim("Weight");
    int input_size = input_dims[1];
    int frame_size = weight_dims[0];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
230
    PADDLE_ENFORCE_EQ(
231 232
        input_size,
        frame_size * 3,
233 234 235
        platform::errors::InvalidArgument(
            "The second dimension of Input(Input) must be 3 times of "
            "frame_size in GRUOp, but received %d (Input) vs %d (frame_size).",
236 237
            input_size,
            frame_size));
G
guosheng 已提交
238
    PADDLE_ENFORCE_EQ(
239 240
        weight_height,
        frame_size,
241 242 243
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
244 245 246 247
            weight_height,
            weight_width,
            frame_size,
            frame_size * 3));
G
guosheng 已提交
248
    PADDLE_ENFORCE_EQ(
249 250
        weight_width,
        frame_size * 3,
251 252 253
        platform::errors::InvalidArgument(
            "The shape of Input(Weight) matrix must be [frame_size, frame_size "
            "* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
254 255 256 257
            weight_height,
            weight_width,
            frame_size,
            frame_size * 3));
258
    if (ctx->HasInput("H0")) {
G
guosheng 已提交
259
      auto h0_dims = ctx->GetInputDim("H0");
260
      PADDLE_ENFORCE_EQ(
261 262
          h0_dims[1],
          frame_size,
263 264 265
          platform::errors::InvalidArgument(
              "The width of Input(H0) must be equal to frame_size, but "
              "received %d (width of H0) vs %d (frame_size).",
266 267
              h0_dims[1],
              frame_size));
G
guosheng 已提交
268 269 270 271
      auto h0_grad_name = framework::GradVarName("H0");
      if (ctx->HasOutput(h0_grad_name))
        ctx->SetOutputDim(h0_grad_name, h0_dims);
    }
272
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
273 274 275
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
276
      PADDLE_ENFORCE_EQ(
277 278
          bias_height,
          1,
279 280 281
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
282 283 284
              bias_height,
              bias_width,
              frame_size * 3));
285
      PADDLE_ENFORCE_EQ(
286 287
          bias_width,
          frame_size * 3,
288 289 290
          platform::errors::InvalidArgument(
              "The shape of Bias must be [1, frame_size * 3], but received "
              "[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
291 292 293
              bias_height,
              bias_width,
              frame_size * 3));
G
guosheng 已提交
294 295 296 297 298 299 300 301 302 303 304
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
    auto input_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
    auto weight_grad_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
305 306 307 308 309 310 311

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Hidden")),
                                   ctx.device_context());
  }
G
guosheng 已提交
312 313
};

314 315 316 317
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
L
Leo Chen 已提交
318
    using DeviceContext = phi::CPUContext;
319 320 321
    using LodTensorPtr = LoDTensor*;
    bool is_test = context.Attr<bool>("is_test");

Q
Qiao Longfei 已提交
322
    bool origin_mode = context.Attr<bool>("origin_mode");
323 324 325 326 327 328 329 330
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

331
    auto input_dims = input->dims();
332 333
    auto hidden_dims = hidden->dims();

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    LodTensorPtr batch_gate, batch_reset_hidden_prev, batch_hidden;
    LoDTensor batch_gate_tmp, batch_reset_hidden_prev_tmp, batch_hidden_tmp;
    if (is_test) {
      batch_gate = &batch_gate_tmp;
      batch_gate->Resize(input_dims);

      batch_reset_hidden_prev = &batch_reset_hidden_prev_tmp;
      batch_reset_hidden_prev->Resize(hidden_dims);

      batch_hidden = &batch_hidden_tmp;
      batch_hidden->Resize(hidden_dims);
    } else {
      batch_gate = context.Output<LoDTensor>("BatchGate");
      batch_hidden = context.Output<LoDTensor>("BatchHidden");
      batch_reset_hidden_prev =
          context.Output<LoDTensor>("BatchResetHiddenPrev");
    }
    batch_gate->mutable_data<T>(context.GetPlace());
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    batch_hidden->mutable_data<T>(context.GetPlace());

355
    bool is_reverse = context.Attr<bool>("is_reverse");
F
Feiyu Chan 已提交
356
    phi::funcs::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
357 358 359 360
    auto& dev_ctx = context.template device_context<DeviceContext>();
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);

    if (bias) {
361
      phi::funcs::RowwiseAdd<DeviceContext, T> add_bias;
362 363 364 365
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
F
Feiyu Chan 已提交
366
    phi::funcs::GRUMetaValue<T> gru_value;
367 368 369 370 371 372 373 374 375 376 377 378
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    framework::Vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(
379 380 381 382 383
          context.template device_context<DeviceContext>(),
          *h0,
          order,
          &ordered_h0,
          true);
384 385 386 387 388
      gru_value.prev_out_value = ordered_h0.data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
T
tensor-tang 已提交
389
    size_t seq_len = batch_starts.size() - 1;
F
Feiyu Chan 已提交
390
    auto active_node = phi::funcs::detail::GetActivationType(
391
        context.Attr<std::string>("activation"));
F
Feiyu Chan 已提交
392
    auto active_gate = phi::funcs::detail::GetActivationType(
393 394 395
        context.Attr<std::string>("gate_activation"));

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
396
    // use MKL packed to speedup GEMM
T
tensor-tang 已提交
397
    if (FLAGS_paddle_num_threads >= 4) {
398
      auto blas = phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
399 400
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix,
                                       1 /*height of C*/,
T
tensor-tang 已提交
401 402
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
403
      PADDLE_ENFORCE_NOT_NULL(
404 405 406 407 408 409 410 411 412 413 414 415
          packed_gate,
          platform::errors::NotFound(
              "The caculation result of packed_gate by "
              "GEMM_ALLOC should not be null when using MKL."));
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size * 2,
                     frame_size,
                     T(1.0),
                     gru_value.gate_weight,
                     frame_size * 2,
T
tensor-tang 已提交
416
                     packed_gate);
417 418
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix,
                                        1 /*height of C*/,
T
tensor-tang 已提交
419 420
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
421
      PADDLE_ENFORCE_NOT_NULL(
422 423 424 425 426 427 428 429 430 431 432 433
          packed_state,
          platform::errors::NotFound(
              "The caculation result of packed_state by "
              "GEMM_ALLOC should not be null when using MKL."));
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size,
                     frame_size,
                     T(1.0),
                     gru_value.state_weight,
                     frame_size,
T
tensor-tang 已提交
434 435 436 437 438
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;
439

T
tensor-tang 已提交
440 441 442 443 444 445 446
        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
447

T
tensor-tang 已提交
448
        if (gru_value.prev_out_value) {
449 450 451 452 453 454 455 456 457 458 459 460
          blas.GEMM_COMPUTE(CblasNoTrans,
                            CblasPacked,
                            cur_batch_size,
                            frame_size * 2,
                            frame_size,
                            gru_value.prev_out_value,
                            frame_size,
                            packed_gate,
                            frame_size * 2,
                            T(1),
                            gru_value.gate_value,
                            frame_size * 3);
T
tensor-tang 已提交
461
        }
462

463
        phi::funcs::detail::forward_reset_output<DeviceContext>(
464 465 466 467 468
            phi::funcs::detail::forward::gru_resetOutput<T>(),
            gru_value,
            frame_size,
            cur_batch_size,
            active_gate);
T
tensor-tang 已提交
469 470

        if (gru_value.prev_out_value) {
471 472 473 474 475 476 477 478 479 480 481 482
          blas.GEMM_COMPUTE(CblasNoTrans,
                            CblasPacked,
                            cur_batch_size,
                            frame_size,
                            frame_size,
                            gru_value.reset_output_value,
                            frame_size,
                            packed_state,
                            frame_size,
                            T(1),
                            gru_value.gate_value + frame_size * 2,
                            frame_size * 3);
T
tensor-tang 已提交
483 484
        }

485
        phi::funcs::detail::forward_final_output<DeviceContext>(
486 487 488 489 490 491
            phi::funcs::detail::forward::gru_finalOutput<T>(),
            gru_value,
            frame_size,
            cur_batch_size,
            active_node,
            origin_mode);
T
tensor-tang 已提交
492 493

        gru_value.prev_out_value = gru_value.output_value;
494 495
      }

T
tensor-tang 已提交
496 497 498
      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
499
#endif
T
tensor-tang 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512
      for (size_t n = 0; n < seq_len; n++) {
        int bstart = static_cast<int>(batch_starts[n]);
        int bend = static_cast<int>(batch_starts[n + 1]);
        int cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
        gru_value.output_value = hidden_t.data<T>();
        gru_value.gate_value = gate_t.data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.data<T>();

513 514 515 516 517 518 519
        phi::funcs::GRUUnitFunctor<DeviceContext, T>::compute(dev_ctx,
                                                              gru_value,
                                                              frame_size,
                                                              cur_batch_size,
                                                              active_node,
                                                              active_gate,
                                                              origin_mode);
T
tensor-tang 已提交
520 521 522

        gru_value.prev_out_value = gru_value.output_value;
      }
523
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
524
    }
525
#endif
F
Feiyu Chan 已提交
526
    phi::funcs::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
527 528 529 530 531 532 533 534 535
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(dev_ctx, *batch_hidden, hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

536 537 538 539 540 541
template <typename T>
class GRUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
542
  void Apply(GradOpPtr<T> grad_op) const override {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    grad_op->SetType("gru_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("H0", this->Input("H0"));
    grad_op->SetInput("Bias", this->Input("Bias"));
    grad_op->SetInput("Weight", this->Input("Weight"));

    grad_op->SetInput("BatchGate", this->Output("BatchGate"));
    grad_op->SetInput("BatchResetHiddenPrev",
                      this->Output("BatchResetHiddenPrev"));
    grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
    grad_op->SetInput("Hidden", this->Output("Hidden"));

    grad_op->SetInput(framework::GradVarName("Hidden"),
                      this->OutputGrad("Hidden"));

    grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetOutput(framework::GradVarName("Weight"),
                       this->InputGrad("Weight"));
    grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));

    grad_op->SetAttrMap(this->Attrs());
  }
};

569 570
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GRUGradOpNoNeedBufferVarInferer,
                                    "Input",
571
                                    "Bias");
572

G
guosheng 已提交
573 574 575 576
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
577 578 579
REGISTER_OPERATOR(gru,
                  ops::GRUOp,
                  ops::GRUOpMaker,
580 581
                  ops::GRUGradOpMaker<paddle::framework::OpDesc>,
                  ops::GRUGradOpMaker<paddle::imperative::OpBase>);
582 583
REGISTER_OPERATOR(gru_grad,
                  ops::GRUGradOp,
584
                  ops::GRUGradOpNoNeedBufferVarInferer);
585 586
REGISTER_OP_CPU_KERNEL(gru,
                       ops::GRUCPUKernel<float>,
587
                       ops::GRUCPUKernel<double>);
L
Leo Chen 已提交
588 589 590
REGISTER_OP_CPU_KERNEL(gru_grad,
                       ops::GRUGradKernel<phi::CPUContext, float>,
                       ops::GRUGradKernel<phi::CPUContext, double>);