triangular_solve_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/triangular_solve_op.h"
#include "paddle/fluid/operators/solve_op.h"

namespace paddle {
namespace operators {

class TriangularSolveOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TriangularSolve");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "TriangularSolve");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "TriangularSolve");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto x_dims_n = x_dims.size();
    auto y_dims_n = y_dims.size();

    PADDLE_ENFORCE_GE(
        x_dims_n, 2, platform::errors::InvalidArgument(
                         "The input tensor X's dimensions of TriangularSolveOp "
                         "should be >= 2. But received X's "
                         "dimensions = %d, X's shape = [%s]",
                         x_dims.size(), x_dims));

    PADDLE_ENFORCE_GE(
        y_dims_n, 2, platform::errors::InvalidArgument(
                         "The input tensor Y's dimensions of TriangularSolveOp "
                         "should be >=2. But received Y's "
                         "dimensions = %d, Y's shape = [%s]",
                         y_dims.size(), y_dims));

    PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2], x_dims[x_dims_n - 1],
                      platform::errors::InvalidArgument(
                          "The inner-most 2 dimensions of Input(X) all should "
                          "be square matrices "
                          "But received X's shape[-2] = %d and shape[-1] = %d.",
                          x_dims[x_dims_n - 2], x_dims[x_dims_n - 1]));

    std::vector<int64_t> x_dims_vec = paddle::framework::vectorize(x_dims);
    std::vector<int64_t> y_dims_vec = paddle::framework::vectorize(y_dims);

    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);

    std::vector<int64_t> expand_batch_portion =
        infer_size(x_dims_vec_cut, y_dims_vec_cut);

    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
    y_broadcast_dims.insert(y_broadcast_dims.end(), {y_dims_vec[y_dims_n - 2],
                                                     y_dims_vec[y_dims_n - 1]});

    // dim of 'Out' is the same with 'Y' after broadcast
    ctx->SetOutputDim("Out", framework::make_ddim(y_broadcast_dims));
    ctx->ShareLoD("X", /*->*/ "Out");
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class TriangularSolveOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), The first input tensor of triangular solve op, which "
             "is the triangular coefficient matrix.");
    AddInput("Y",
             "(Tensor), The second input tensor of triangular solve op, which "
             "is multiple right-hand.");
    AddOutput("Out", "(Tensor), The solution tensor of triangular solve op.");
    AddAttr<bool>("upper",
                  "whether to solve the upper-triangular or the "
                  "lower-triangular system of equations")
        .SetDefault(true);
    AddAttr<bool>("transpose", "whether X should be transposed firstly.")
        .SetDefault(false);
    AddAttr<bool>("unitriangular", "whether X is unit triangular.")
        .SetDefault(false);
    AddComment(R"DOC(
          Triangular Solve Operator.
          This operator is used to computes the solution of equations with a triangular coefficient matrix.

          The equation is:
          $$Out = X^-1 * Y$$
)DOC");
  }
};

class TriangularSolveOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
      const override {
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
  }
};

class TriangularSolveGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "triangular_solve");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "triangular_solve");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "triangular_solve");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "triangular_solve");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

template <typename T>
class TriangularSolveOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("triangular_solve_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("Out", this->Output("Out"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(triangular_solve, ops::TriangularSolveOp,
                  ops::TriangularSolveOpMaker,
                  ops::TriangularSolveOpInferVarType,
                  ops::TriangularSolveOpGradMaker<paddle::framework::OpDesc>,
                  ops::TriangularSolveOpGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(triangular_solve_grad, ops::TriangularSolveGradOp);

REGISTER_OP_CPU_KERNEL(
    triangular_solve,
    ops::TriangularSolveKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TriangularSolveKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    triangular_solve_grad,
    ops::TriangularSolveGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TriangularSolveGradKernel<paddle::platform::CPUDeviceContext, double>);