conv_transpose_op.cc 21.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
F
From00 已提交
16

S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19

20
#include "paddle/fluid/framework/data_layout.h"
F
From00 已提交
21 22
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
F
From00 已提交
25 26 27
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
J
Jacek Czaja 已提交
28 29 30 31
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
32 33 34
namespace paddle {
namespace operators {

35 36
using DataLayout = framework::DataLayout;

37 38
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
39
  framework::LibraryType library_{framework::LibraryType::kPlain};
40
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
41 42
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
C
chengduoZH 已提交
43
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
44
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
45
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
46
  if (platform::is_gpu_place(ctx.GetPlace())) {
L
Leo Chen 已提交
47
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
C
chengduoZH 已提交
48
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
49 50 51
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
52 53
  }
#endif
J
Jacek Czaja 已提交
54 55
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
56
      this->CanMKLDNNBeUsed(ctx, data_type)) {
J
Jacek Czaja 已提交
57 58
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
59
  }
J
Jacek Czaja 已提交
60
#endif
61

62
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
63 64
}

65
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
66 67
    const std::string& var_name,
    const framework::Tensor& tensor,
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
83 84
          expected_kernel_type.data_type_,
          tensor.place(),
85 86 87 88
          framework::StringToDataLayout(data_format));
    }
  }
#endif
89 90
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
91 92
}

Y
Yu Yang 已提交
93
void Conv2DTransposeOpMaker::Make() {
94 95 96 97 98
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
99 100 101 102 103 104 105 106
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
107 108 109 110
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
111 112
      .AsDispensable()
      .AsExtra();
C
chengduoZH 已提交
113
  AddOutput("Output",
C
chengduoZH 已提交
114
            "(Tensor) The output tensor of convolution transpose operator. "
115
            "The format of output tensor is the same as input tensor.");
L
LielinJiang 已提交
116 117 118 119 120
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
121 122 123
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
124 125
      .SetDefault({})
      .SupportTensor();
Y
Yibing Liu 已提交
126 127 128 129
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
130 131 132 133 134
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
135 136
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
137
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
138
      "convolution transpose operator.")
C
chengduoZH 已提交
139
      .SetDefault({1, 1});
C
chengduoZH 已提交
140 141
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
142
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
143
      "transpose operator.")
C
chengduoZH 已提交
144
      .SetDefault({0, 0});
145 146 147 148
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
149 150 151 152 153 154 155 156 157
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
158
  AddComment(R"DOC(
C
chengduoZH 已提交
159 160
Convolution2D Transpose Operator.

C
chengduoZH 已提交
161
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
162
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
163
parameters is checked in the infer-shape.
164
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
165 166 167 168 169 170
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
171
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
172

Y
update  
yi.wu 已提交
173
For an example:
C
chengduoZH 已提交
174
  Input:
C
chengduoZH 已提交
175 176
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
177
  Output:
C
chengduoZH 已提交
178 179 180
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
181 182
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
183
  $$
C
chengduoZH 已提交
184 185 186
)DOC");
}

Y
Yu Yang 已提交
187
void Conv3DTransposeOpMaker::Make() {
188 189 190 191 192 193
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
194 195
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
196 197 198
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
199 200
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
201
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
202
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
203 204
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
205
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
206
            "Where N is batch size, C is "
C
chengduoZH 已提交
207 208
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
L
LielinJiang 已提交
209 210 211 212 213
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
214 215 216 217
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
218 219 220 221 222 223
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
224
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
225
                            "(vector<int> default:{1, 1, 1}), the "
226
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
227
                            "convolution transpose operator.")
C
chengduoZH 已提交
228
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
229
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
230
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
231
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
232
      .SetDefault({0, 0, 0});
233 234 235 236
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
237 238 239 240
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
241 242 243 244 245 246 247 248 249
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
250
  AddComment(R"DOC(
C
chengduoZH 已提交
251 252
Convolution3D Transpose Operator.

C
chengduoZH 已提交
253
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
254
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
255
parameters is checked in the infer-shape.
256
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
257 258 259 260 261 262 263
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
264
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
265

266
Example:
C
chengduoZH 已提交
267
  Input:
C
chengduoZH 已提交
268 269
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
270
  Output:
C
chengduoZH 已提交
271 272 273
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
274 275 276
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
277
  $$
C
chengduoZH 已提交
278 279 280
)DOC");
}

281 282
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
283 284
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
285
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
286
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
287
  if (platform::is_gpu_place(ctx.GetPlace())) {
L
Leo Chen 已提交
288
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
C
chengduoZH 已提交
289 290 291
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
292 293 294 295 296 297 298
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

299
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
300
  return framework::OpKernelType(
301 302 303 304
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
      ctx.GetPlace(),
      layout_,
      library_);
305 306
}

H
hong 已提交
307 308
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
309
 public:
H
hong 已提交
310
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
311 312

 protected:
313
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
314 315 316 317 318 319 320 321
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
322
    }
H
hong 已提交
323 324
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
325 326 327
  }
};

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
template <typename T>
class ConvTransposeDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));

    op->SetOutput("DDOutput",
                  ddx.empty()
                      ? this->EmptyInputGrad()
                      : this->InputGrad(framework::GradVarName("Output")));
357 358 359 360 361 362
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
363 364 365 366 367 368 369

    op->SetAttrMap(this->Attrs());
  }
};

framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
370 371
  bool use_cudnn =
      ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
372
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
373
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
374
  if (platform::is_gpu_place(ctx.GetPlace())) {
L
Leo Chen 已提交
375
    auto& dev_ctx = ctx.template device_context<phi::GPUContext>();
376 377 378 379 380 381 382 383 384 385 386 387
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
  return framework::OpKernelType(
388 389 390 391
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
      ctx.GetPlace(),
      layout_,
      library_);
392 393
}

C
chengduoZH 已提交
394 395 396 397
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
398

399
// conv2d_transpose
400 401
DECLARE_INFER_SHAPE_FUNCTOR(conv2d_transpose,
                            Conv2dTranposeInferShapeFunctor,
402
                            PD_INFER_META(phi::Conv2dTransposeInferMeta));
F
From00 已提交
403 404
DECLARE_INFER_SHAPE_FUNCTOR(conv2d_transpose_grad,
                            Conv2dTranposeGradInferShapeFunctor,
405
                            PD_INFER_META(phi::Conv2dTransposeGradInferMeta));
F
From00 已提交
406
DECLARE_INFER_SHAPE_FUNCTOR(
407 408
    conv2d_transpose_grad_grad,
    Conv2dTranposeDoubleGradInferShapeFunctor,
F
From00 已提交
409 410
    PD_INFER_META(phi::Conv2dTransposeDoubleGradInferMeta));

411 412
REGISTER_OPERATOR(conv2d_transpose,
                  ops::ConvTransposeOp,
Y
Yang Yang 已提交
413
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
414
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
415 416
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
                  Conv2dTranposeInferShapeFunctor);
417 418
REGISTER_OPERATOR(conv2d_transpose_grad,
                  ops::ConvTransposeOpGrad,
F
From00 已提交
419 420 421
                  ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>,
                  Conv2dTranposeGradInferShapeFunctor);
422 423
REGISTER_OPERATOR(conv2d_transpose_grad_grad,
                  ops::ConvTransposeOpDoubleGrad,
F
From00 已提交
424
                  Conv2dTranposeDoubleGradInferShapeFunctor);
C
chengduoZH 已提交
425

426
// conv3d_transpose
427 428
DECLARE_INFER_SHAPE_FUNCTOR(conv3d_transpose,
                            Conv3dTranposeInferShapeFunctor,
F
From00 已提交
429 430 431 432 433
                            PD_INFER_META(phi::ConvTransposeInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(conv3d_transpose_grad,
                            Conv3dTranposeGradInferShapeFunctor,
                            PD_INFER_META(phi::ConvTransposeGradInferMeta));

434 435
REGISTER_OPERATOR(conv3d_transpose,
                  ops::ConvTransposeOp,
Y
Yang Yang 已提交
436
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
437
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
438 439
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
                  Conv3dTranposeInferShapeFunctor);
440 441
REGISTER_OPERATOR(conv3d_transpose_grad,
                  ops::ConvTransposeOpGrad,
F
From00 已提交
442
                  Conv3dTranposeGradInferShapeFunctor);
443 444

// depthwise conv2d_transpose
F
From00 已提交
445 446
DECLARE_INFER_SHAPE_FUNCTOR(depthwise_conv2d_transpose,
                            DepthWiseConv2dTranposeInferShapeFunctor,
447
                            PD_INFER_META(phi::Conv2dTransposeInferMeta));
F
From00 已提交
448 449
DECLARE_INFER_SHAPE_FUNCTOR(depthwise_conv2d_transpose_grad,
                            DepthWiseConv2dTranposeGradInferShapeFunctor,
450
                            PD_INFER_META(phi::Conv2dTransposeGradInferMeta));
F
From00 已提交
451

452 453
REGISTER_OPERATOR(depthwise_conv2d_transpose,
                  ops::ConvTransposeOp,
454
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
455
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
456 457
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
                  DepthWiseConv2dTranposeInferShapeFunctor);
458 459
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad,
                  ops::ConvTransposeOpGrad,
F
From00 已提交
460
                  DepthWiseConv2dTranposeGradInferShapeFunctor);
461 462 463 464 465 466 467 468 469 470

REGISTER_OP_VERSION(conv_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade convtranspose add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
471
            std::vector<int>{}));
472 473 474 475 476 477 478 479 480 481

REGISTER_OP_VERSION(conv2d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
482 483 484 485 486 487 488 489 490
            std::vector<int>{}))
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d transpose to add a new attributes [force_fp32_output, mkldnn_data_type].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("force_fp32_output",
                     "Force BF16 kernel output FP32, only used in MKL-DNN BF16",
                     false)
491 492
            .NewAttr("mkldnn_data_type",
                     "Data type of mkldnn kernel",
493
                     "float32"));
494 495 496 497 498 499 500 501 502 503

REGISTER_OP_VERSION(conv3d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
504
            std::vector<int>{}));
505 506 507 508 509 510 511 512 513 514

REGISTER_OP_VERSION(depthwise_conv2d_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise conv2d transpose to add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
515
            std::vector<int>{}));