pull_dense_worker.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include "paddle/fluid/framework/device_worker.h"

17
namespace phi {
18
class DenseTensor;
19
}  // namespace phi
20

21 22 23
namespace paddle {
namespace framework {

24 25 26
class Scope;
class Variable;

27
std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
28 29 30 31 32 33
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
34 35 36 37

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
38
  dwp_param_ = param.downpour_param();
39 40 41
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
42 43
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
44 45 46 47 48 49 50 51 52
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
53
    // setup dense variables for each table
H
heqiaozhi 已提交
54
    int var_num = table.dense_value_name_size();
55 56
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
57
      dense_value_names_[tid][j] = table.dense_value_name(j);
58 59 60 61 62 63
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
64
  fleet_ptr_ = FleetWrapper::GetInstance();
65
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
66
  copy_streams_.clear();
T
Thunderbrook 已提交
67
#endif
68 69
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
70 71 72 73 74 75
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
76 77
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
92
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
93 94
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
T
Thunderbrook 已提交
95 96 97 98
#endif
#ifdef PADDLE_WITH_XPU
      pin_tensor->mutable_data<float>(tensor->dims(), platform::CPUPlace());
#endif
T
Thunderbrook 已提交
99 100 101
    }
  }
#endif
102 103 104 105 106 107 108 109 110 111 112 113
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

114
  size_t MAX_FAIL_NUM = 20;
115
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
116 117
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
118 119
    exit(-1);
  }
120
  status_vec->resize(0);
121 122
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
140
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
141
        memory::Copy(places_[i], w, platform::CUDAPinnedPlace(), pin_w,
T
Thunderbrook 已提交
142
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
T
Thunderbrook 已提交
143 144
#endif
#ifdef PADDLE_WITH_XPU
145
        memory::Copy(places_[i], w, platform::CPUPlace(), pin_w,
T
Thunderbrook 已提交
146 147
                     sizeof(float) * tensor->numel());
#endif
T
Thunderbrook 已提交
148 149 150 151
      }
    }
  }
#endif
152 153 154 155 156 157 158 159 160
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

161 162
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
163 164
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
165 166 167
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
168 169
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
170
      VLOG(3) << "pull dense " << force_update << " " << tid;
171
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
172 173 174 175 176
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
177 178 179 180 181 182 183 184
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

185 186
int PullDenseWorker::Start() {
  running_ = true;
187 188
  // before training, we can pull dense from pserver first.
  PullDense(true);
189 190 191 192 193 194
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
195
    PullDense(false);
D
dongdaxiang 已提交
196
#ifndef _WIN32
197
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
198
#endif
199 200 201 202 203 204 205 206 207 208 209 210 211
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
212 213
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
214 215 216 217 218 219 220 221 222 223
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

224 225 226 227 228 229 230 231 232 233 234
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

T
Thunderbrook 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
void PullDenseWorker::MergeDenseParam() {
  for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++x) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(x));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];

      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scopes_[0]->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
}

252 253
}  // namespace framework
}  // namespace paddle