test_im2sequence_op.py 9.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
G
gongweibao 已提交
14 15
import unittest
import numpy as np
16
from .op_test import OpTest
G
gongweibao 已提交
17 18


19 20
def get_output_shape(attrs, in_shape, img_real_size):
    batchsize = in_shape[0]
21 22
    img_height = in_shape[2]
    img_width = in_shape[3]
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    paddings = np.array(attrs['paddings']).astype("int32")
    kernels = np.array(attrs['kernels']).astype("int32")
    strides = np.array(attrs['strides']).astype("int32")
    output_height = np.zeros((1, batchsize)).astype("int32")
    output_width = np.zeros((1, batchsize)).astype("int32")
    if len(img_real_size):
        out_stride = np.array(attrs['out_stride']).astype("int32")
        imgreal_h = 0
        imgreal_w = 0
        for index in range(batchsize):
            if img_real_size[index, 0] % out_stride[0] == 0:
                imgreal_h = img_real_size[index, 0] / out_stride[0]
            else:
                imgreal_h = img_real_size[index, 0] / out_stride[0] + 1
            if img_real_size[index, 0] % out_stride[1] == 0:
                imgreal_w = img_real_size[index, 1] / out_stride[1]
            else:
                imgreal_w = img_real_size[index, 0] / out_stride[1] + 1
            output_height[0,index] = \
              1 +  \
              (imgreal_h + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
                  strides[0]
G
gongweibao 已提交
45

46 47 48 49 50 51 52 53 54 55
            output_width[0,index] = \
              1 + \
              (imgreal_w + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
                  strides[1]
    else:
        for index in range(batchsize):
            output_height[0,index] = \
              1 +  \
              (img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
                  strides[0]
G
gongweibao 已提交
56

57 58 59 60
            output_width[0,index] = \
              1 + \
              (img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
                  strides[1]
G
gongweibao 已提交
61

G
gongweibao 已提交
62
    return output_height, output_width
G
gongweibao 已提交
63 64


G
gongweibao 已提交
65
def im2col(attrs, im, col):
G
gongweibao 已提交
66 67 68 69 70
    """
    im: {CHW}
    col:
        {outputHeight, outputWidth, inputChannels, filterHeight, filterWidth}
    """
W
wanghaoshuang 已提交
71 72
    input_channels, input_height, input_width = im.shape
    output_height, output_width, _, filter_height, filter_width = col.shape
G
gongweibao 已提交
73

W
wanghaoshuang 已提交
74 75
    stride_height, stride_width = attrs['strides']
    padding_height, padding_width = attrs['paddings'][0:2]
G
gongweibao 已提交
76

G
gongweibao 已提交
77 78
    for col_row_idx in range(0, output_height):
        for col_col_idx in range(0, output_width):
G
gongweibao 已提交
79
            for channel in range(0, input_channels):
G
gongweibao 已提交
80 81 82 83
                for filter_row_idx in range(0, filter_height):
                    for filter_col_idx in range(0, filter_width):
                        im_row_offset = col_row_idx * stride_height \
                            + filter_row_idx - padding_height
G
gongweibao 已提交
84

G
gongweibao 已提交
85 86
                        im_col_offset = col_col_idx * stride_width \
                            + filter_col_idx - padding_width
G
gongweibao 已提交
87

G
gongweibao 已提交
88 89
                        if (im_row_offset < 0 or
                                im_row_offset >= input_height or
G
gongweibao 已提交
90
                                im_col_offset < 0 or
G
gongweibao 已提交
91
                                im_col_offset >= input_width):
G
gongweibao 已提交
92
                            col[col_row_idx][col_col_idx][channel][\
G
gongweibao 已提交
93 94
                                filter_row_idx][filter_col_idx] = 0.0
                        else:
G
gongweibao 已提交
95 96
                            im_offset = (channel * input_height + im_row_offset \
                                         ) * input_width + im_col_offset
G
gongweibao 已提交
97 98 99

                            col[col_row_idx][col_col_idx][channel][\
                                filter_row_idx][filter_col_idx] = im[channel][ \
G
gongweibao 已提交
100 101 102
                                    im_row_offset][im_col_offset]


103 104 105
def Im2Sequence(inputs, img_real_size, attrs):
    output_height, output_width = get_output_shape(attrs, inputs.shape,
                                                   img_real_size)
W
wanghaoshuang 已提交
106 107
    img_channels = inputs.shape[1]
    batch_size = inputs.shape[0]
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    out = []
    for index in range(batch_size):
        tmp = np.zeros([
            output_height[0, index], output_width[0, index], img_channels,
            attrs['kernels'][0], attrs['kernels'][1]
        ]).astype("float32")
        out.append(tmp)
    for index in range(len(inputs)):
        im2col(attrs, inputs[index], out[index])
        out[index] = out[index].reshape([
            output_height[0, index] * output_width[0, index],
            img_channels * attrs['kernels'][0] * attrs['kernels'][1]
        ])
    out = np.concatenate(out, axis=0)
W
wanghaoshuang 已提交
122
    return out
G
gongweibao 已提交
123

G
gongweibao 已提交
124 125

class TestBlockExpandOp(OpTest):
W
wanghaoshuang 已提交
126 127 128 129 130 131
    def config(self):
        self.batch_size = 1
        self.img_channels = 3
        self.img_height = 4
        self.img_width = 4
        self.attrs = {
W
wanghaoshuang 已提交
132 133
            'kernels': [2, 2],
            'strides': [1, 1],
134
            'paddings': [1, 1, 1, 1],
G
gongweibao 已提交
135 136
        }

W
wanghaoshuang 已提交
137 138
    def setUp(self):
        self.config()
139 140
        self.op_type = "im2sequence"
        x = np.random.uniform(0.1, 1, [
W
wanghaoshuang 已提交
141 142
            self.batch_size, self.img_channels, self.img_height, self.img_width
        ]).astype("float32")
G
gongweibao 已提交
143

144 145
        real_size = np.array([]).astype("float32")
        out = Im2Sequence(x, real_size, self.attrs)
W
wanghaoshuang 已提交
146 147
        self.inputs = {'X': x}
        self.outputs = {'Out': out}
G
gongweibao 已提交
148 149 150 151 152 153 154 155

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


W
wanghaoshuang 已提交
156 157 158 159 160 161 162
class TestBlockExpandOpCase2(TestBlockExpandOp):
    def config(self):
        self.batch_size = 2
        self.img_channels = 3
        self.img_height = 4
        self.img_width = 5
        self.attrs = {
W
wanghaoshuang 已提交
163 164
            'kernels': [2, 1],
            'strides': [2, 1],
165
            'paddings': [2, 1, 2, 1],
G
gongweibao 已提交
166 167
        }

G
gongweibao 已提交
168

W
wanghaoshuang 已提交
169 170
class TestBlockExpandOpCase3(TestBlockExpandOp):
    def config(self):
171
        self.batch_size = 2
W
wanghaoshuang 已提交
172 173 174 175
        self.img_channels = 1
        self.img_height = 4
        self.img_width = 5
        self.attrs = {
W
wanghaoshuang 已提交
176 177
            'kernels': [2, 1],
            'strides': [2, 1],
178
            'paddings': [2, 0, 2, 0],
W
wanghaoshuang 已提交
179
        }
G
gongweibao 已提交
180

G
gongweibao 已提交
181

W
wanghaoshuang 已提交
182 183 184 185 186 187 188
class TestBlockExpandOpCase4(TestBlockExpandOp):
    def config(self):
        self.batch_size = 2
        self.img_channels = 2
        self.img_height = 3
        self.img_width = 3
        self.attrs = {
W
wanghaoshuang 已提交
189 190
            'kernels': [2, 2],
            'strides': [1, 1],
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            'paddings': [0, 0, 0, 0],
        }


class TestBlockExpandOpCase5(OpTest):
    def config(self):
        self.batch_size = 1
        self.img_channels = 3
        self.img_height = 4
        self.img_width = 5
        self.attrs = {
            'kernels': [2, 1],
            'strides': [2, 1],
            'paddings': [2, 1, 2, 1],
            'out_stride': [2, 2],
        }

    def setUp(self):
        self.config()
        self.op_type = "im2sequence"
        x = np.random.uniform(0.1, 1, [
            self.batch_size, self.img_channels, self.img_height, self.img_width
        ]).astype("float32")
        real_size = np.array([[8, 10], [5, 8]]).astype("float32")
        out = np.array(Im2Sequence(x, real_size, self.attrs))
        self.inputs = {'X': x, 'Y': real_size}  #l ??
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()


class TestBlockExpandOpCase6(OpTest):
    def config(self):
        self.batch_size = 3
        self.img_channels = 1
        self.img_height = 4
        self.img_width = 5
        self.attrs = {
            'kernels': [2, 1],
            'strides': [1, 1],
            'paddings': [0, 0, 0, 0],
            'out_stride': [1, 1],
        }

    def setUp(self):
        self.config()
        self.op_type = "im2sequence"
        x = np.random.uniform(0.1, 1, [
            self.batch_size, self.img_channels, self.img_height, self.img_width
        ]).astype("float32")
        real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32")
        out = np.array(Im2Sequence(x, real_size, self.attrs))
        self.inputs = {'X': x, 'Y': real_size}  #l ??
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()


class TestBlockExpandOpCase7(OpTest):
    def config(self):
        self.batch_size = 2
        self.img_channels = 2
        self.img_height = 3
        self.img_width = 3
        self.attrs = {
            'kernels': [2, 2],
            'strides': [1, 1],
            'paddings': [1, 0, 1, 0],
            'out_stride': [2, 2],
W
wanghaoshuang 已提交
262
        }
G
gongweibao 已提交
263

264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def setUp(self):
        self.config()
        self.op_type = "im2sequence"
        x = np.random.uniform(0.1, 1, [
            self.batch_size, self.img_channels, self.img_height, self.img_width
        ]).astype("float32")
        real_size = np.array([[6, 6], [4, 4]]).astype("float32")
        out = np.array(Im2Sequence(x, real_size, self.attrs))
        self.inputs = {'X': x, 'Y': real_size}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

G
gongweibao 已提交
278 279 280

if __name__ == '__main__':
    unittest.main()
281
#set shiftwidth=4 set expandtab set tabstop=4