scale_op.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

27 28 29 30 31 32 33 34 35 36
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * ConcatOp
 */
class ScaleOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
37 38
                  const framework::Scope& scope,
                  bool test_mode) override {
39 40 41 42 43 44 45 46 47 48
    VLOG(3) << "convert a fluid scale op to tensorrt mul layer without bias";

    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    std::vector<nvinfer1::ITensor*> itensors;
    std::string input_name = op_desc.Input("X").front();
    std::string out_name = op_desc.Output("Out").front();

    auto input = engine_->GetITensor(input_name);
    bool bias_after_scale =
R
Ruibiao Chen 已提交
49 50 51
        PADDLE_GET_CONST(bool, op_desc.GetAttr("bias_after_scale"));
    float bias = PADDLE_GET_CONST(float, op_desc.GetAttr("bias"));
    float scale = PADDLE_GET_CONST(float, op_desc.GetAttr("scale"));
W
wenbin 已提交
52
    bool is_int = input->getType() == nvinfer1::DataType::kINT32;
53
    nvinfer1::ILayer* layer = nullptr;
54
    if (engine_->with_dynamic_shape()) {
W
wenbin 已提交
55 56 57
      nvinfer1::ITensor* bias_tensor =
          is_int ? Add1DConstantLayer(static_cast<int>(bias))
                 : Add1DConstantLayer(bias);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
      bool is_bias_0 = (bias < 1e-06 && bias > -1e-06);

      std::vector<int32_t> bias_shapes(input->getDimensions().nbDims, 1);
      auto* bias_shapes_tensor = Add1DConstantLayer(bias_shapes);
      auto* reshape_layer_bias =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *bias_tensor);
      reshape_layer_bias->setInput(1, *bias_shapes_tensor);

      bool has_scale_tensor;
      nvinfer1::ITensor* scale_tensor;
      bool is_scale_1;

      auto scale_inputs = op_desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end() &&
          op_desc.Input("ScaleTensor").size()) {  // has EndsTensor input
        has_scale_tensor = true;
        scale_tensor = engine_->GetITensor(op_desc.Input("ScaleTensor")[0]);
        is_scale_1 = false;
      } else {
        has_scale_tensor = false;
W
wenbin 已提交
78 79
        scale_tensor = is_int ? Add1DConstantLayer(static_cast<int>(scale))
                              : Add1DConstantLayer(scale);
80 81
        is_scale_1 = ((scale - 1.0) < 1e-06 && (scale - 1.0) > -1e-06);
      }
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
      std::vector<int32_t> scale_shapes(input->getDimensions().nbDims, 1);
      auto* scale_shapes_tensor = Add1DConstantLayer(scale_shapes);
      auto* reshape_layer_scale =
          TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *scale_tensor);
      reshape_layer_scale->setInput(1, *scale_shapes_tensor);

      if (!has_scale_tensor && is_scale_1 && is_bias_0) {
        layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input);
      } else {
        if (bias_after_scale) {
          if (!is_scale_1) {
            layer = TRT_ENGINE_ADD_LAYER(engine_,
                                         ElementWise,
                                         *input,
                                         *reshape_layer_scale->getOutput(0),
                                         nvinfer1::ElementWiseOperation::kPROD);
            input = layer->getOutput(0);
          }
          if (!is_bias_0) {
            layer = TRT_ENGINE_ADD_LAYER(engine_,
                                         ElementWise,
                                         *input,
                                         *reshape_layer_bias->getOutput(0),
                                         nvinfer1::ElementWiseOperation::kSUM);
          }
108
        } else {
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
          if (!is_bias_0) {
            layer = TRT_ENGINE_ADD_LAYER(engine_,
                                         ElementWise,
                                         *input,
                                         *reshape_layer_bias->getOutput(0),
                                         nvinfer1::ElementWiseOperation::kSUM);
            input = layer->getOutput(0);
          }
          if (!is_scale_1) {
            layer = TRT_ENGINE_ADD_LAYER(engine_,
                                         ElementWise,
                                         *input,
                                         *reshape_layer_scale->getOutput(0),
                                         nvinfer1::ElementWiseOperation::kPROD);
          }
124 125
        }
      }
126
    } else {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
      auto create_weights = [&](float data, std::string type) -> float* {
        std::unique_ptr<phi::DenseTensor> tmp_tensor(new phi::DenseTensor());
        tmp_tensor->Resize({1});
        auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
        tmp_data[0] = data;
        engine_->SetWeights(out_name + "_scale_op_" + type,
                            std::move(tmp_tensor));
        return tmp_data;
      };

      float* bias_ptr = create_weights(bias, "bias");
      float* scale_ptr = create_weights(scale, "scale");

      TensorRTEngine::Weight scale_weights{
          nvinfer1::DataType::kFLOAT, static_cast<void*>(scale_ptr), 1};
      TensorRTEngine::Weight shift_weights{
          nvinfer1::DataType::kFLOAT, static_cast<void*>(bias_ptr), 1};
      TensorRTEngine::Weight power_weights{
          nvinfer1::DataType::kFLOAT, nullptr, 0};

      auto input_dim = input->getDimensions();

      nvinfer1::IShuffleLayer* expand_layer = nullptr;
      nvinfer1::IShuffleLayer* squeeze_layer = nullptr;

      if (input_dim.nbDims < 3) {
        nvinfer1::Dims expand_shape;
        expand_shape.nbDims = 3;
        for (int i = 0; i < 3; i++) {
          if (i < input_dim.nbDims) {
            expand_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
          } else {
            expand_shape.d[i] = 1;
          }
        }
        expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
        expand_layer->setReshapeDimensions(expand_shape);
        input = expand_layer->getOutput(0);
        expand_layer->getOutput(0)->setName(
            ("before_reshape_out: " + out_name).c_str());
        expand_layer->setName(
            ("Scale: before_reshape (Output: " + out_name + ")").c_str());
      }
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      if (bias_after_scale) {
        layer = TRT_ENGINE_ADD_LAYER(engine_,
                                     Scale,
                                     *input,
                                     nvinfer1::ScaleMode::kUNIFORM,
                                     shift_weights.get(),
                                     scale_weights.get(),
                                     power_weights.get());
        layer->getOutput(0)->setName(
            ("bias_after_scale_out: " + out_name).c_str());
        layer->setName(("Scale: scale (Output: " + out_name + ")").c_str());
      } else {
        // add bias
        layer = TRT_ENGINE_ADD_LAYER(engine_,
                                     Scale,
                                     *(input),
                                     nvinfer1::ScaleMode::kUNIFORM,
                                     shift_weights.get(),
                                     power_weights.get(),
                                     power_weights.get());
        layer->getOutput(0)->setName(
            ("bias_before_scale:bias_out: " + out_name).c_str());
        layer->setName(
            ("Scale: scale_bias (Output: " + out_name + ")").c_str());
        // mul scale
        layer = TRT_ENGINE_ADD_LAYER(engine_,
                                     Scale,
                                     *(layer->getOutput(0)),
                                     nvinfer1::ScaleMode::kUNIFORM,
                                     power_weights.get(),
                                     scale_weights.get(),
                                     power_weights.get());
        layer->getOutput(0)->setName(
            ("bias_before_scale:scale_out: " + out_name).c_str());
        layer->setName(
            ("Scale: scale_scale (Output: " + out_name + ")").c_str());
      }
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      PADDLE_ENFORCE_EQ(layer != nullptr,
                        true,
                        platform::errors::Fatal("Create scale layer failed."));

      if (input_dim.nbDims < 3) {
        nvinfer1::Dims squeeze_shape;
        squeeze_shape.nbDims = input_dim.nbDims;
        for (int i = 0; i < squeeze_shape.nbDims; i++) {
          squeeze_shape.d[i] = input_dim.d[i] < 0 ? 0 : input_dim.d[i];
        }
        squeeze_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(layer->getOutput(0)));
        squeeze_layer->setReshapeDimensions(squeeze_shape);
        layer = static_cast<nvinfer1::ILayer*>(squeeze_layer);
        layer->getOutput(0)->setName(
            ("after_reshape_out: " + out_name).c_str());
        layer->setName(
            ("Scale: Shuffle_reshape (Output: " + out_name + ")").c_str());
227
      }
228
    }
229 230 231 232 233 234 235 236 237
    RreplenishLayerAndOutput(layer, "scale", {out_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(scale, ScaleOpConverter);