temporal_shift_grad_kernel.cu 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/temporal_shift_grad_kernel.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T>
__global__ void KeTemporalShiftBwNCHW(const T* output_grad,
                                      T* input_grad,
                                      const int ntchw,
                                      const int tchw,
                                      const int chw,
                                      const int hw,
                                      const int t,
                                      const int c1,
                                      const int c2) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;

  for (; tid < ntchw; tid += stride) {
    int it = (tid % tchw) / chw;
    int ic = (tid % chw) / hw;

    if (ic < c1) {
      src_it = it + 1;
    } else if (ic < c2) {
      src_it = it - 1;
    } else {
      src_it = it;
    }

    if (src_it >= 0 && src_it < t) {
      input_grad[tid] = output_grad[tid + (src_it - it) * chw];
    } else {
      input_grad[tid] = 0;
    }
  }
}

template <typename T>
__global__ void KeTemporalShiftBwNHWC(const T* output_grad,
                                      T* input_grad,
                                      const int nthwc,
                                      const int thwc,
                                      const int hwc,
                                      const int t,
                                      const int c,
                                      const int c1,
                                      const int c2) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;

  for (; tid < nthwc; tid += stride) {
    int it = (tid % thwc) / hwc;
    int ic = tid % c;

    if (ic < c1) {
      src_it = it + 1;
    } else if (ic < c2) {
      src_it = it - 1;
    } else {
      src_it = it;
    }

    if (src_it >= 0 && src_it < t) {
      input_grad[tid] = output_grad[tid + (src_it - it) * hwc];
    } else {
      input_grad[tid] = 0;
    }
  }
}

template <typename T, typename Context>
void TemporalShiftGradKernel(const Context& dev_ctx,
                             const DenseTensor& out_grad,
                             int seg_num,
                             float shift_ratio,
                             const std::string& data_format_str,
                             DenseTensor* x_grad) {
  auto* input_grad = x_grad;
  auto* output_grad = &out_grad;
  int t = seg_num;
101
  const DataLayout data_layout = phi::StringToDataLayout(data_format_str);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  const int nt = output_grad->dims()[0];
  const int c = (data_layout == DataLayout::kNCHW ? output_grad->dims()[1]
                                                  : output_grad->dims()[3]);
  const int h = (data_layout == DataLayout::kNCHW ? output_grad->dims()[2]
                                                  : output_grad->dims()[1]);
  const int w = (data_layout == DataLayout::kNCHW ? output_grad->dims()[3]
                                                  : output_grad->dims()[2]);

  const int hw = h * w;
  const int chw = c * hw;
  const int tchw = t * chw;
  const int ntchw = nt * chw;

  const int c1 = static_cast<int>(c * shift_ratio);
  const int c2 = static_cast<int>(c * 2 * shift_ratio);

  DDim in_grad_dims =
      (data_layout == DataLayout::kNCHW ? phi::make_ddim({nt, c, h, w})
                                        : phi::make_ddim({nt, h, w, c}));
  const T* output_grad_data = output_grad->data<T>();
123 124
  input_grad->Resize(in_grad_dims);
  T* input_grad_data = dev_ctx.template Alloc<T>(input_grad);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

  int pixelNum = nt * chw;
  int threads = 1024;
  int grid = (pixelNum + threads - 1) / threads;
  int blocks_per_sm = dev_ctx.GetMaxPhysicalThreadCount() / threads;
  grid = std::min(dev_ctx.GetSMCount() * blocks_per_sm, grid);

  if (data_layout == DataLayout::kNCHW) {
    KeTemporalShiftBwNCHW<T><<<grid, threads, 0, dev_ctx.stream()>>>(
        output_grad_data, input_grad_data, ntchw, tchw, chw, hw, t, c1, c2);
  } else {
    KeTemporalShiftBwNHWC<T><<<grid, threads, 0, dev_ctx.stream()>>>(
        output_grad_data, input_grad_data, ntchw, tchw, chw, t, c, c1, c2);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(temporal_shift_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::TemporalShiftGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}