elementwise_base.h 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/platform/transform.h"
18 19 20
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/elementwise_utils.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
24

25
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
26
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
27
#include "paddle/phi/kernels/funcs/aligned_vector.h"
28
#include "paddle/phi/kernels/funcs/function_traits.h"
29
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
30

31
#define HOSTDEVICE __host__ __device__
32
namespace kps = phi::kps;
33 34 35

#endif

36
namespace phi {
37

38 39 40 41 42
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
43
    typename std::conditional_t<Num == 1, T, phi::Array<T, Num>>;
44 45

namespace funcs {
46
using DDim = phi::DDim;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

template <typename T, typename DeviceContext>
class RowwiseTransformIterator;

template <typename T, typename DeviceContext>
class MidWiseTransformIterator;

// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
template <typename T>
class RowwiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, CPUContext> &operator++() {
    ++i_;
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
    return *this;
  }

  RowwiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

  bool operator==(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int i_;
  int64_t n_;
};

template <typename T>
class MidWiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  MidWiseTransformIterator(const T *ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, CPUContext> &operator++() {
    ++j_;
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      j_ = 0;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }
    return *this;
  }

  MidWiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

  bool operator==(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int64_t i_;
  int64_t j_;
  int64_t n_;
  int64_t post_;
};

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
157 158
class RowwiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
159 160
                                      const T *> {
 public:
161
  typedef thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                                   const T *>
      super_t;
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
      : super_t(x), begin_(x), n_(n) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
177 178
class MidWiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
179 180
                                      const T *> {
 public:
181
  typedef thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                                   const T *>
      super_t;
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
      : super_t(x), begin_(x), n_(n), post_(post) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

template <typename Functor,
          typename T,
          typename DeviceContext,
          typename OutType = T>
class TransformFunctor {
 public:
  TransformFunctor(const DenseTensor &x,
                   const DenseTensor &y,
                   DenseTensor *z,
                   const DeviceContext &ctx,
                   Functor func,
                   const bool is_xsize_larger = true)
      : x_(x.data<T>()),
        y_(y.data<T>()),
212
        z_(ctx.template Alloc<OutType>(z)),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        nx_(x.numel()),
        ctx_(ctx),
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y.numel();
    }
  }

  inline void Run() const {
    paddle::platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
  }

  inline void RunRowWise(int n, int pre) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n),
            z_,
            func_);
    }
  }

  inline void RunMidWise(int n, int pre, int post) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post),
            z_,
            func_);
    }
  }

 private:
  const T *x_;
  const T *y_;
  OutType *z_;
  int64_t nx_;
  const DeviceContext &ctx_;
  Functor func_;
  bool is_xsize_larger_;
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const DenseTensor &x,
                               const DenseTensor &y,
                               DenseTensor *z,
                               int *x_dims_array,
                               int *y_dims_array,
                               int *out_dims_array,
                               int max_dim,
                               const CPUContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  PADDLE_ENFORCE_NOT_NULL(
      x_data, errors::InvalidArgument("The input X should not be empty."));
  PADDLE_ENFORCE_NOT_NULL(
      y_data, errors::InvalidArgument("The input Y should not be empty."));
  OutType *out_data = ctx.Alloc<OutType>(z);

  const int out_size = std::accumulate(
      out_dims_array, out_dims_array + max_dim, 1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
308 309 310
  }
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
template <typename Functor, typename T, typename OutType = T>
void CommonElementwiseBroadcastForward(const CPUContext &dev_ctx,
                                       const DenseTensor &x,
                                       const DenseTensor &y,
                                       DenseTensor *z,
                                       const DDim &x_dims,
                                       const DDim &y_dims,
                                       Functor func,
                                       int axis,
                                       const bool is_xsize_larger = true) {
  int max_dim = (std::max)(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      phi::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
329 330 331 332 333 334 335
  PADDLE_ENFORCE_LE(
      axis,
      max_dim,
      phi::errors::InvalidArgument(
          "Axis should be less than or equal to %d, but received axis is %d.",
          max_dim,
          axis));
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims,
                         y_dims,
                         x_dims_array.data(),
                         y_dims_array.data(),
                         out_dims_array.data(),
                         max_dim,
                         axis);

  CommonForwardBroadcastCPU<Functor, T, OutType>(x,
                                                 y,
                                                 z,
                                                 x_dims_array.data(),
                                                 y_dims_array.data(),
                                                 out_dims_array.data(),
                                                 max_dim,
                                                 dev_ctx,
                                                 func,
                                                 is_xsize_larger);
}

// It is a common CPU implementation to compute binary calculation with the
// support of broadcast. Note:
// 1. CPU implementation cannot support the case when x needs broadcast, thus
//    this function need to be called with XxxFunctor and XxxInverseFunctor,
//    like AddFunctor and InverseAddFunctor.
// 2. The corresponding GPU implementation supports all the broadcast cases,
//    thus there is no need to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const CPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  dev_ctx.Alloc<OutType>(z);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, CPUContext, OutType> functor(
      x, y, z, dev_ctx, func, is_xsize_larger);
  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
398 399 400 401 402 403 404
  PADDLE_ENFORCE_LE(
      axis,
      max_dim,
      errors::InvalidArgument(
          "Axis should be less than or equal to %d, but received axis is %d.",
          max_dim,
          axis));
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    GetMidDims(x_dims,
               y_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    GetMidDims(y_dims,
               x_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, T, OutType>(
        dev_ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
    return;
  }

  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
443 444 445
  }
}

446
// for broadcast backwards
447 448
static inline std::vector<int> GetReduceDim(const DDim &in,
                                            const DDim &out,
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(const DeviceContext &dev_ctx,
                                           const DenseTensor &x,
                                           const DenseTensor *ddx,
                                           DenseTensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
475 476
    auto meta = phi::DenseTensorMeta(x.dtype(), x.dims(), x.layout());
    *ddx_safe = phi::Empty(dev_ctx, std::move(meta));
477
    dev_ctx.template Alloc<T>(ddx_safe);
478
    SetConstant<DeviceContext, T> set_zero;
479 480 481 482 483 484 485 486 487 488 489
    set_zero(dev_ctx, ddx_safe, static_cast<T>(0));
  }
}

inline void ElementwiseGradPreProcess(const DenseTensor &dout,
                                      DenseTensor *dx) {
  if (dx != nullptr) {
    dx->set_lod(dout.lod());
  }
}

490
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
491

492 493 494 495 496 497 498
// static unroller
template <template <int Index, int VecSize> typename Func,
          int VecSize,
          int End,
          int Begin = 0>
struct Unroller {
  template <typename... Args>
499
  static HOSTDEVICE inline void step(Args &&...args) {
500 501 502 503 504 505 506 507
    Func<Begin, VecSize>::Apply(std::forward<Args>(args)...);
    Unroller<Func, VecSize, End, Begin + 1>::step(args...);
  }
};

template <template <int Index, int VecSize> typename Func, int VecSize, int End>
struct Unroller<Func, VecSize, End, End> {
  template <typename... Args>
508
  static HOSTDEVICE inline void step(Args &&...args) {}
509 510 511 512 513 514 515
};

template <int Index, int VecSize>
struct Loader {
  template <typename Array, typename ArgsT>
  static __device__ void Apply(const Array &in,
                               ArgsT *args,
516
                               kps::IndexType offset,
517
                               int num,
518
                               int read_lens,
519 520
                               bool is_boundary) {
    using Type = std::tuple_element_t<Index, ArgsT>;
521 522
    kps::Init<Type, ArgsT, Index, VecSize>(
        args, static_cast<Type>(1.0f), read_lens);
523
    if (is_boundary) {
524
      kps::ReadData<Type, VecSize, 1, ArgsT, Index, true>(
525
          args,
526
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
527 528
          num,
          read_lens);
529
    } else {
530
      kps::ReadData<Type, VecSize, 1, ArgsT, Index, false>(
531
          args,
532
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
533 534
          num,
          read_lens);
535 536 537 538 539 540 541 542 543
    }
  }
};

template <int Index, int VecSize>
struct InputSetter {
  template <typename Array>
  static HOSTDEVICE void Apply(
      const std::vector<const DenseTensor *> &ins_tensor, Array *ins_data) {
544
    (*ins_data)[Index] = (const _ptr_ char *)(ins_tensor[Index]->data());
545 546 547 548 549 550 551 552 553 554
  }
};

template <int Index, int VecSize>
struct VecSizeGetter {
  template <typename ArgsT>
  static HOSTDEVICE void Apply(const std::vector<const DenseTensor *> &ins,
                               const ArgsT &args,
                               int *vec_size) {
    using Type = std::tuple_element_t<Index, ArgsT>;
555 556
    *vec_size = std::min<int>(*vec_size,
                              phi::GetVectorizedSize(ins[Index]->data<Type>()));
557 558 559 560
  }
};

template <typename OutT, typename Functor>
561 562
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
563 564 565
#ifdef PADDLE_WITH_XPU_KP
  int vec_size = 256;
#else
566
  using Traits = phi::funcs::FunctionTraits<Functor>;
567 568
  using ArgsT = typename Traits::ArgsTuple;
  const int Arity = Traits::arity;
569
  int vec_size = 4;
570 571 572
  ArgsT arg;
  // The Arg VecSize=1 is to match the Unroller template.
  Unroller<VecSizeGetter, 1, Arity>::step(ins, arg, &vec_size);
573
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
574 575
    vec_size =
        std::min<int>(vec_size, phi::GetVectorizedSize((*iter)->data<OutT>()));
576
  }
577
#endif
578 579 580 581 582 583 584 585 586 587 588 589
  return vec_size;
}

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
590 591
                                    OutT *result,
                                    int read_lens);
592 593 594 595 596 597
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
598 599
                                    OutT *result,
                                    int read_lens) {
600
    kps::ElementwiseAny<InT, OutT, VecSize, 1, Arity, Functor>(
601 602 603 604
        result, args, func);
  }
};

605 606 607 608
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 0, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
609 610
                                    OutT *result,
                                    int read_lens) {
611
    kps::ElementwiseConstant<InT, OutT, VecSize, 1, Functor>(result, func);
612 613 614
  }
};

615 616 617 618
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
619 620
                                    OutT *result,
                                    int read_lens) {
621
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, Functor>(
622 623 624 625 626 627 628 629
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
630 631
                                    OutT *result,
                                    int read_lens) {
632
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, Functor>(
633
        result, args[0], args[1], func, read_lens);
634 635 636 637 638 639 640
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
641 642
                                    OutT *result,
                                    int read_lens) {
643
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, Functor>(
644 645 646 647
        result, args[0], args[1], args[2], func);
  }
};

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
namespace detail {
template <class F, class Tuple, std::size_t... Index>
// GCC/Clang need the decltype() return type
HOSTDEVICE constexpr decltype(auto) ApplyImpl(F &&f,
                                              Tuple &&t,
                                              std::index_sequence<Index...>) {
  return std::forward<F>(f)(std::get<Index>(std::forward<Tuple>(t))...);
}
}  // namespace detail

template <class F, class Tuple>
HOSTDEVICE constexpr decltype(auto) Apply(F &&f, Tuple &&t) {
  return detail::ApplyImpl(
      std::forward<F>(f),
      std::forward<Tuple>(t),
      std::make_index_sequence<
          std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}

template <typename OutT,
          int VecSize,
          typename Functor,
          typename ArgsT,
          int Arity>
struct SameDimsElementwisePrimitiveCaller {
673 674 675 676 677 678 679 680 681
  __device__ inline void operator()(Functor func,
                                    ArgsT *args,
                                    OutT *result,
                                    int read_lens) {
#ifdef PADDLE_WITH_XPU_KP
    for (int idx = 0; idx < read_lens; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
#else
682 683 684 685
#pragma unroll
    for (int idx = 0; idx < VecSize; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
686
#endif
687 688 689
  }
};

690 691 692 693 694
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCallerBc {
  __device__ __forceinline__ void operator()(
      phi::Array<_ptr_ OutT *, NumOuts> outs,
      ConditionalT<OutT, NumOuts> src[VecSize],
695
      kps::IndexType block_offset,
696 697 698 699 700 701 702 703 704 705 706 707
      int num,
      int read_lens) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < read_lens; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
708
      kps::WriteData<OutT, VecSize, 1, IsBoundary>(
709 710 711 712 713 714 715 716 717
          outs[i] + block_offset, dst[i], num, read_lens);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, 1> {
  __device__ __forceinline__ void operator()(phi::Array<_ptr_ OutT *, 1> outs,
                                             OutT src[VecSize],
718
                                             kps::IndexType block_offset,
719 720
                                             int num,
                                             int read_lens) {
721
    kps::WriteData<OutT, VecSize, 1, IsBoundary>(
722 723 724 725
        outs[0] + block_offset, src, num, read_lens);
  }
};

726
template <typename OutT,
727 728 729 730 731 732
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
733 734
    const phi::Array<const _ptr_ char *__restrict__, Arity> &in,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
735
    kps::IndexType offset,
736
    int num,
737
    int read_lens,
738
    Functor func) {
739
  using Traits = phi::funcs::FunctionTraits<Functor>;
740 741
  using ArgsT = typename Traits::ArgsTuple;
  ArgsT args[VecSize];
742 743
  ConditionalT<OutT, NumOuts> result[VecSize];

744
  Unroller<Loader, VecSize, Arity>::step(
745
      in, args, offset, num, read_lens, IsBoundary);
746

747 748 749 750
  SameDimsElementwisePrimitiveCaller<ConditionalT<OutT, NumOuts>,
                                     VecSize,
                                     Functor,
                                     ArgsT,
751
                                     Arity>()(func, args, result, read_lens);
752

753
  ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, NumOuts>()(
754
      outs, result, offset, num, read_lens);
755 756
}

757
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
758
__global__ void VectorizedElementwiseKernel(
759 760
    phi::Array<const _ptr_ char *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
761 762
    kps::IndexType numel,
    kps::IndexType main_offset,
763
    int read_lens,
764
    Functor func) {
765 766 767 768
  kps::IndexType data_offset =
      static_cast<kps::IndexType>(BLOCK_ID_X) * BLOCK_NUM_X * read_lens;
  kps::IndexType stride =
      static_cast<kps::IndexType>(BLOCK_NUM_X) * GRID_NUM_X * read_lens;
769
  for (; data_offset < main_offset; data_offset += stride) {
770
    VectorizedElementwiseKernelImpl<OutT,
771 772 773 774 775
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
776
        ins, outs, data_offset, read_lens * BLOCK_NUM_X, read_lens, func);
777 778
  }

779
  kps::IndexType remain = numel - data_offset;
780
  if (remain > 0) {
781
    VectorizedElementwiseKernelImpl<OutT,
782 783 784 785
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
786
                                    true>(
787
        ins, outs, data_offset, static_cast<int>(remain), read_lens, func);
788 789 790
  }
}

791
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
792 793 794 795 796 797 798 799
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
                                 const std::vector<const DenseTensor *> &ins,
                                 std::vector<DenseTensor *> *outs,
                                 Functor func) {
  // There are at least 1 output, but maybe 0 input (ins.size() == 0).
  // For large tensor numel * sizeof(T) > 2^31, we must use int64_t as index
  // type.
  int64_t numel = (*outs)[0]->numel();
800 801
  phi::Array<const _ptr_ char *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
802

803
  Unroller<InputSetter, VecSize, Arity>::step(ins, &ins_data);
804
  for (int i = 0; i < NumOuts; ++i) {
805
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
806
  }
807
#ifdef PADDLE_WITH_XPU_KP
808 809
  int block_size = 64;
  int grid_size = 8;
810
  int read_lens = kps::details::GetXpuReadLens(numel, block_size, grid_size);
811
  auto stream = ctx.x_context()->xpu_stream;
812 813
  int64_t main_offset =
      (numel / (read_lens * block_size)) * read_lens * block_size;
814 815
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<grid_size, block_size, 0, stream>>>(
816
          ins_data, outs_data, numel, main_offset, read_lens, func);
817
#else
W
Wilber 已提交
818
  auto gpu_config =
819
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);
820 821
  int64_t main_offset = (numel / (VecSize * gpu_config.GetBlockSize())) *
                        VecSize * gpu_config.GetBlockSize();
822
  auto stream = ctx.stream();
823 824
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>(
825
          ins_data, outs_data, numel, main_offset, VecSize, func);
826 827 828
#endif
}

829
template <typename OutT, typename Functor, int NumOuts = 1>
830 831 832 833
void ElementwiseKernel(const KPDevice &ctx,
                       const std::vector<const DenseTensor *> &ins,
                       std::vector<DenseTensor *> *outs,
                       Functor func) {
834
  using Traits = phi::funcs::FunctionTraits<Functor>;
835
  const int kArity = Traits::arity;
836 837
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
838
                    phi::errors::InvalidArgument(
839
                        "The number of inputs is expected to be equal to the "
840
                        "arity of functor. But received: the number of inputs "
841 842 843 844 845
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
846
                    phi::errors::InvalidArgument(
847 848 849 850 851 852 853 854 855 856
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
857
          phi::errors::InvalidArgument(
858 859 860 861 862 863 864
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

  // calculate the max vec_size for all ins and outs
865
  int vec_size = GetVectorizedSizeForTensors<OutT, Functor>(ins, *outs);
866
  switch (vec_size) {
867
    case VecSizeL:
868
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeL>(
869
          ctx, ins, outs, func);
870
      break;
871
    case VecSizeM:
872
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeM>(
873
          ctx, ins, outs, func);
874
      break;
875
    case VecSizeS:
876
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeS>(
877
          ctx, ins, outs, func);
878 879
      break;
    default: {
880
      PADDLE_THROW(phi::errors::Unimplemented(
881 882 883 884 885
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}
886

887 888
#endif

889
}  // namespace funcs
890
}  // namespace phi