diagonal.h 6.8 KB
Newer Older
H
hong 已提交
1
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
L
Li Fuchen 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
H
hong 已提交
16 17 18 19

#if defined(__NVCC__) || defined(__HIPCC__)
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
20

21
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
H
hong 已提交
22 23
#endif

L
Li Fuchen 已提交
24
#include <algorithm>
H
hong 已提交
25

26
#include "paddle/phi/core/dense_tensor.h"
C
Chen Weihang 已提交
27
#include "paddle/phi/kernels/funcs/for_range.h"
L
Li Fuchen 已提交
28

29
namespace phi {
30 31
namespace funcs {

L
Li Fuchen 已提交
32
template <typename T>
33
struct DiagonalFunctor {
H
hong 已提交
34 35 36 37 38
  DiagonalFunctor(const T* input,
                  const int64_t* diag_stride,
                  const int64_t* ret_strides,
                  int64_t pos,
                  int64_t dim_size,
39
                  T* diag)
L
Li Fuchen 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      : input_(input),
        diag_stride_(diag_stride),
        ret_strides_(ret_strides),
        pos_(pos),
        dim_size_(dim_size),
        diag_(diag) {}

  HOSTDEVICE void operator()(size_t idx) const {
    int64_t position = pos_;
    int64_t num = idx;
    for (int64_t i = 0; i < dim_size_; i++) {
      position += num / diag_stride_[i] * ret_strides_[i];
      num = num % diag_stride_[i];
    }
    diag_[idx] = input_[position];
  }

  const T* input_;
  const int64_t* diag_stride_;
  const int64_t* ret_strides_;
  int64_t pos_;
  int64_t dim_size_;
  T* diag_;
};

H
hong 已提交
65 66 67 68 69 70
template <typename T, typename DeviceContext>
DenseTensor Diagonal(const DeviceContext& context,
                     const DenseTensor* input,
                     int64_t offset,
                     int64_t dim1,
                     int64_t dim2) {
L
Li Fuchen 已提交
71 72
  auto* input_data = input->data<T>();
  auto input_dims = input->dims();
73
  auto input_stride = phi::stride(input_dims);
L
Li Fuchen 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  auto dim1_ = dim1 < 0 ? input_dims.size() + dim1 : dim1;
  auto dim2_ = dim2 < 0 ? input_dims.size() + dim2 : dim2;
  auto len1 = input_dims[std::min(dim1_, dim2_)];
  auto len2 = input_dims[std::max(dim1_, dim2_)];
  auto stride1 = input_stride[std::min(dim1_, dim2_)];
  auto stride2 = input_stride[std::max(dim1_, dim2_)];

  int offset_stride = 0;
  if (offset >= 0) {
    offset_stride = stride2;
    len2 -= offset;
  } else {
    offset_stride = stride1;
    len1 += offset;
  }
  int diag_size = len2 < len1 ? len2 : len1;

  if (diag_size > 0) {
    auto ret_strides = vectorize(input_stride);
    auto ret_dims = vectorize(input_dims);
    ret_strides.erase(ret_strides.begin() + std::max(dim1_, dim2_));
    ret_strides.erase(ret_strides.begin() + std::min(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::max(dim1_, dim2_));
    ret_dims.erase(ret_dims.begin() + std::min(dim1_, dim2_));
    if (ret_strides.empty()) {
      ret_strides.push_back(1);
      ret_dims.push_back(1);
    }
    ret_strides.push_back(stride1 + stride2);
    ret_dims.push_back(diag_size);
H
hong 已提交
104
    DenseTensor diag;
105 106
    DDim diag_dims = phi::make_ddim(ret_dims);
    auto dig_stride = phi::stride(diag_dims);
107 108
    diag.Resize(diag_dims);
    auto diag_data = context.template Alloc<T>(&diag);
L
Li Fuchen 已提交
109 110 111

    int64_t pos = std::abs(offset) * offset_stride;
    int64_t dim_size = ret_strides.size();
112
#if defined(__NVCC__) || defined(__HIPCC__)
L
Li Fuchen 已提交
113 114 115 116 117 118 119 120 121
    thrust::device_vector<int64_t> diag_vec(vectorize(dig_stride));
    const int64_t* diag_arr = thrust::raw_pointer_cast(diag_vec.data());
    thrust::device_vector<int64_t> ret_vec(ret_strides);
    const int64_t* ret_arr = thrust::raw_pointer_cast(ret_vec.data());
#else
    auto* diag_arr = dig_stride.Get();
    const auto* ret_arr = ret_strides.data();
#endif

H
hong 已提交
122
    // auto& dev_ctx = context.template device_context<DeviceContext>();
C
Chen Weihang 已提交
123
    phi::funcs::ForRange<DeviceContext> for_range(context, diag.numel());
H
hong 已提交
124 125
    DiagonalFunctor<T> functor(
        input_data, diag_arr, ret_arr, pos, dim_size, diag_data);
L
Li Fuchen 已提交
126 127 128 129 130 131 132
    for_range(functor);
    return diag;
  } else {
    return {};
  }
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
template <typename T>
std::vector<T> ComputeDimStride(const std::vector<T> dim) {
  size_t dim_size = dim.size();
  std::vector<T> dim_strides;
  dim_strides.resize(dim_size);
  for (size_t i = 0; i < dim_size - 1; i++) {
    size_t temp_stride = 1;
    for (size_t j = i + 1; j < dim_size; j++) {
      temp_stride = temp_stride * dim[j];
    }
    dim_strides[i] = temp_stride;
  }
  dim_strides[dim_size - 1] = 1;
  return dim_strides;
}

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T, int X_DIM_SIZE, int OUT_DIM_SIZE>
__global__ void DiagonalCuda(const T* data1,
                             T* data2,
                             const int64_t offset_,
                             int64_t axis1_,
                             int64_t axis2_,
                             int64_t* x_stride,
                             int64_t* out_stride,
                             int64_t numel,
                             bool is_grad) {
  CUDA_KERNEL_LOOP(idx, numel) {
    int64_t idx_dim[X_DIM_SIZE] = {0};
    int64_t temp = 0;
    for (size_t i = 0; i < X_DIM_SIZE - 1; i++) {
      idx_dim[i] = (idx - temp) / x_stride[i];
      temp = temp + idx_dim[i] * x_stride[i];
    }
    idx_dim[X_DIM_SIZE - 1] = idx - temp;

    int64_t axis1_dim = idx_dim[axis1_];
    int64_t axis2_dim = idx_dim[axis2_];

    int64_t out_dim[OUT_DIM_SIZE] = {0};
    int temp_pos = 0;
    for (int i = 0; i < X_DIM_SIZE; i++) {
      if (i != axis1_ && i != axis2_) {
        out_dim[temp_pos] = idx_dim[i];
        temp_pos++;
      }
    }
    bool flag = false;
    if (offset_ == 0 && axis1_dim == axis2_dim) {
      out_dim[temp_pos] = axis1_dim;
      flag = true;
    } else if (offset_ > 0 && (axis1_dim + offset_) == axis2_dim) {
      out_dim[temp_pos] = axis1_dim;
      flag = true;
    } else if (offset_ < 0 && (axis1_dim + offset_) == axis2_dim) {
      out_dim[temp_pos] = axis2_dim;
      flag = true;
    }
    if (!is_grad) {
      if (flag) {
        int64_t idx_output = 0;
        for (size_t i = 0; i < OUT_DIM_SIZE - 1; i++) {
          idx_output = idx_output + out_dim[i] * out_stride[i];
        }
        idx_output = idx_output + out_dim[OUT_DIM_SIZE - 1];
        data2[idx_output] = data1[idx];
      }
    } else {
      if (flag) {
        int64_t idx_output = 0;
        for (size_t i = 0; i < OUT_DIM_SIZE - 1; i++) {
          idx_output = idx_output + out_dim[i] * out_stride[i];
        }
        idx_output = idx_output + out_dim[OUT_DIM_SIZE - 1];
        data2[idx] = data1[idx_output];
      } else {
        data2[idx] = static_cast<T>(0);
      }
    }
  }
}
#endif

216
}  // namespace funcs
217
}  // namespace phi