creation.py 80.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23 24
import warnings

import numpy as np

import paddle
from paddle import _C_ops, _legacy_C_ops
25
from paddle.common_ops_import import fill_constant
26

27 28
from ..fluid.data_feeder import (
    check_dtype,
29 30
    check_type,
    check_variable_and_dtype,
31 32 33
    convert_dtype,
)
from ..fluid.framework import (
34
    Variable,
35
    _in_eager_without_dygraph_check,
36
    _in_legacy_dygraph,
37
    device_guard,
38
)
39
from ..fluid.initializer import Initializer
40
from ..fluid.layers import utils
41
from ..fluid.param_attr import ParamAttr
42 43 44 45 46 47 48 49 50
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    _non_static_mode,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
51

52 53
__all__ = []

W
wangchaochaohu 已提交
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
        (type(None), Initializer),
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


153 154
def linspace(start, stop, num, dtype=None, name=None):
    r"""
155
    Return fixed number of evenly spaced values within a given interval.
156 157

    Args:
158 159 160 161 162 163
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
164 165
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
166
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
167 168 169 170

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
171
        the value with input :attr:`start`.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
192
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
193 194
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
195
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
196 197
    if not isinstance(num, Variable):
        with device_guard("cpu"):
198
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
199
    if in_dygraph_mode():
200 201 202 203 204 205 206
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
207
    if _in_legacy_dygraph():
208 209 210
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
211 212 213 214 215 216 217

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
218 219 220 221 222 223
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
224 225 226 227
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
228 229 230 231 232 233
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
234 235 236 237
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
238 239 240 241 242 243 244 245 246 247
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
248 249
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
250 251 252 253
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
254 255 256

    out = helper.create_variable_for_type_inference(dtype=dtype)

257 258 259 260 261 262
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
263
    if isinstance(num, int):
264
        out.desc.set_shape((num,))
265 266 267
    return out


268 269 270 271
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
272

273 274
    Notes:
        This API does not compute the gradient.
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
290
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
291 292 293 294 295

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
296
        just has the value with exponential of :attr:`start` with base :attr:`base`.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
330 331 332
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
333 334 335 336 337 338 339 340

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
341 342 343 344 345 346
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
347 348 349 350
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
351 352 353 354 355 356
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
357 358 359 360 361 362 363
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
364 365 366 367 368 369
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
370 371 372
    else:
        check_type(base, 'base', (int, float), 'logspace')

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
391 392
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
393 394 395 396
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
397 398 399

    out = helper.create_variable_for_type_inference(dtype=dtype)

400 401 402 403 404 405 406 407 408 409 410
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
411
    if isinstance(num, int):
412
        out.desc.set_shape((num,))
413 414 415
    return out


416
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
417 418

    if not isinstance(data, np.ndarray):
419

420
        def _handle_dtype(data, dtype):
421 422 423 424 425
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

426 427 428 429
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
430
            if data.dtype == np.object_:
431 432 433 434
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
435 436 437 438 439 440
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
441
            data = data._copy_to(place, False)
442
            data = _handle_dtype(data, dtype)
443
            data.stop_gradient = stop_gradient
444
            return data
445
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
446
            # should't expose it to users, just for internal use.
447 448
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
449 450 451 452
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
453 454 455 456
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
457
            return data
458 459
        else:
            raise TypeError(
460 461 462 463
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
464 465
        if not dtype:
            if data.dtype in [
466 467 468 469 470
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
471 472 473
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
474 475 476 477 478
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
479 480 481 482 483
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
484 485

    if dtype and convert_dtype(dtype) != data.dtype:
486
        data = data.astype(convert_dtype(dtype))
487

J
Jiabin Yang 已提交
488
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
489 490 491 492 493 494 495 496
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
497
    else:
498 499 500 501 502 503 504
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
505 506


507 508 509 510 511
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
512 513 514 515 516 517 518

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

519 520 521 522 523
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
524 525 526 527 528
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

529 530
        if dtype:
            target_dtype = dtype
531
        elif hasattr(data, 'dtype') and data.dtype != 'object':
532 533 534 535 536 537
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

538 539 540 541 542
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
543
            if not all(
544 545
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


567 568
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
569
    Constructs a ``paddle.Tensor`` from ``data`` ,
570 571 572 573 574 575 576 577
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
578
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
579
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
580
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
581
            except for python float number which gets dtype from ``get_default_type`` .
582 583 584
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
585 586 587 588 589 590 591 592 593 594
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
610
        #        [1])
611 612 613 614 615 616 617 618 619 620 621 622 623 624

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
625 626 627 628
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

629 630 631 632 633
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
634
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
635 636 637
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
638
            return _to_tensor_static(data, dtype, stop_gradient)
639 640


641
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
642
    """
S
swtkiwi 已提交
643

644 645
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
646

P
Pei Yang 已提交
647
    Args:
648 649
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
650
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
651
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
652
            data type is the same as input.
653
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
654

P
Pei Yang 已提交
655
    Returns:
656
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
657

P
Pei Yang 已提交
658 659
    Examples:
        .. code-block:: python
660

P
Pei Yang 已提交
661
          import paddle
662

663
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
664
          output = paddle.full_like(input, 2.0)
665 666
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
667 668 669
    """

    if dtype is None:
670
        dtype = x.dtype
671
    else:
672 673 674
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

675
    if in_dygraph_mode():
676
        return _C_ops.full_like(x, fill_value, dtype, x.place)
677 678

    if _in_legacy_dygraph():
679 680 681
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
682

683
    helper = LayerHelper("full_like", **locals())
684
    check_variable_and_dtype(
685 686
        x,
        'x',
687
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
688 689
        'full_like',
    )
690
    check_dtype(
691 692
        dtype,
        'dtype',
693
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
694 695
        'full_like/zeros_like/ones_like',
    )
696
    out = helper.create_variable_for_type_inference(dtype=dtype)
697

698 699 700 701 702 703
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
704
    out.stop_gradient = True
P
Pei Yang 已提交
705 706 707
    return out


708
def ones(shape, dtype=None, name=None):
709
    """
B
BrilliantYuKaimin 已提交
710
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
711 712

    Args:
713 714 715
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
716 717 718
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
719

720
    Returns:
B
BrilliantYuKaimin 已提交
721
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
722 723 724 725

    Examples:
        .. code-block:: python

726
            import paddle
727

728
            # shape is a list/tuple
729
            data1 = paddle.ones(shape=[3, 2])
730 731 732 733 734
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
735 736 737 738 739 740 741 742 743 744 745 746
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
747
    """
748 749 750
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
751 752


753
def ones_like(x, dtype=None, name=None):
754
    """
C
Chen Long 已提交
755
    Returns a Tensor filled with the value 1, with the same shape and
756
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
757 758

    Args:
759 760
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
761
        dtype(str|np.dtype, optional): The data type of the
762 763 764
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
765
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
766

767
    Returns:
768 769 770
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

771 772 773
    Examples:
        .. code-block:: python

774
            import paddle
775

776
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
777 778
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
779

780 781
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
782 783


784
def zeros(shape, dtype=None, name=None):
785
    """
C
Chen Long 已提交
786
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
787 788

    Args:
789 790 791
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
792
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
793 794 795
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
796 797

    Returns:
798
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
799 800 801 802

    Examples:
        .. code-block:: python

803
            import paddle
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
824
    """
825 826 827
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
828 829


830
def zeros_like(x, dtype=None, name=None):
831
    """
832
    Returns a Tensor filled with the value 0, with the same shape and
833
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
834 835

    Args:
836 837
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
838
        dtype(str|np.dtype, optional): The data type of the
839 840 841
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
842
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
843 844

    Returns:
845 846
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
847

848

849 850 851
    Examples:
        .. code-block:: python

852
            import paddle
853

Z
zhupengyang 已提交
854
            x = paddle.to_tensor([1, 2, 3])
855 856
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
857

858 859
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
860 861


862
def eye(num_rows, num_columns=None, dtype=None, name=None):
863
    """
864

865
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
866

867
    Args:
868 869
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
870
            If None, default: num_rows.
W
wangchaochaohu 已提交
871
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
872 873
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
874
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
875

876
    Returns:
877
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
878

879 880
    Examples:
        .. code-block:: python
881

882
          import paddle
883

884
          data = paddle.eye(3, dtype='int32')
885 886 887
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
888
          data = paddle.eye(2, 3, dtype='int32')
889 890
          # [[1 0 0]
          #  [0 1 0]]
891 892
    """

893 894 895 896 897 898 899 900
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

901 902
    if dtype is None:
        dtype = 'float32'
903 904 905
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
906
        _check_attr(num_columns, "num_columns")
907 908 909 910
    else:
        num_columns = num_rows

    if _non_static_mode():
911
        if in_dygraph_mode():
912 913 914
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
915
        elif _in_legacy_dygraph():
916 917 918
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
919 920 921

    else:
        helper = LayerHelper("eye", **locals())
922 923 924 925 926 927
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
928
        out = helper.create_variable_for_type_inference(dtype=dtype)
929 930 931 932 933 934 935 936 937 938 939
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
940 941 942

    out.stop_gradient = True
    return out
943 944


945
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
946
    """
S
swtkiwi 已提交
947

948
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
949

W
wangchaochaohu 已提交
950
    Args:
951 952 953 954 955
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
956
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
957
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
958 959
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
960

961
    Returns:
962
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
963

W
wangchaochaohu 已提交
964 965 966
    Examples:
        .. code-block:: python

967
            import paddle
W
wangchaochaohu 已提交
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
995 996 997 998 999
    """

    if dtype is None:
        dtype = 'float32'

1000
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1001 1002


1003
def arange(start=0, end=None, step=1, dtype=None, name=None):
1004
    """
1005
    Returns a 1-D Tensor with spaced values within a given interval.
1006

1007 1008
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1009

1010 1011
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1012 1013

    Parameters:
1014 1015
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1016 1017
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1018
        end(float|int|Tensor, optional): End of interval. The interval does not
1019 1020 1021 1022
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1023 1024
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1025 1026
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1027
        dtype(str|np.dtype, optional): The data type of the
1028 1029
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1030
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1031

1032
    Returns:
1033
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1034 1035
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1036

Z
zhupengyang 已提交
1037
    Examples:
1038 1039
        .. code-block:: python

Z
zhupengyang 已提交
1040
            import paddle
1041

Z
zhupengyang 已提交
1042 1043
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1044

Z
zhupengyang 已提交
1045 1046
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1047

Z
zhupengyang 已提交
1048 1049 1050
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1051

1052
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1053 1054
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1055

1056 1057 1058 1059 1060 1061
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1062

1063
    out_shape = None
1064 1065 1066 1067 1068
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
1069 1070
        out_shape = [int(math.ceil((end - start) / step))]

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1093
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1094 1095

    if _in_legacy_dygraph():
1096
        out = _legacy_C_ops.range(start, end, step)
1097 1098 1099
        out.stop_gradient = True
        return out

1100 1101 1102
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
1103 1104
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1105 1106 1107 1108 1109
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1110
    out.stop_gradient = True
1111 1112
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1113
    return out
W
WuHaobo 已提交
1114 1115 1116


def _tril_triu_op(helper):
1117
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1118
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1119
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1120 1121

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1122
    check_variable_and_dtype(
1123 1124 1125 1126 1127
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1128
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1129
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1130
    diagonal = helper.kwargs.get('diagonal', 0)
1131
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1132 1133 1134 1135 1136 1137
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1138 1139 1140
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1141 1142 1143 1144 1145 1146 1147 1148

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1149 1150
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1151 1152 1153 1154

    return out


Y
yaoxuefeng 已提交
1155
def tril(x, diagonal=0, name=None):
1156
    r"""
1157
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1158 1159
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1160 1161 1162
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1163
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1164
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1165 1166 1167 1168 1169 1170 1171
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1172
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1173 1174

    Returns:
Y
yaoxuefeng 已提交
1175
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1176
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1177 1178 1179 1180

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1181
            import paddle
W
WuHaobo 已提交
1182

1183 1184 1185 1186 1187
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1188

1189 1190 1191 1192 1193
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1194 1195

            # example 2, positive diagonal value
1196 1197 1198 1199 1200
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1201 1202

            # example 3, negative diagonal value
1203 1204 1205 1206 1207
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1208
    """
F
From00 已提交
1209
    if in_dygraph_mode():
1210
        return _C_ops.tril(x, diagonal, True)
F
From00 已提交
1211 1212

    if _in_legacy_dygraph():
1213
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1214
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1215 1216 1217 1218

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1219
def triu(x, diagonal=0, name=None):
1220
    r"""
1221
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1222
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1223 1224 1225 1226
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1227
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1228 1229 1230 1231 1232 1233 1234 1235
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1236
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1237 1238

    Returns:
Y
yaoxuefeng 已提交
1239
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1240
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1241 1242 1243 1244

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1245
            import paddle
W
WuHaobo 已提交
1246

1247 1248 1249 1250 1251
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1252 1253

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1254
            triu1 = paddle.tensor.triu(x)
1255 1256 1257 1258
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1259 1260

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1261
            triu2 = paddle.tensor.triu(x, diagonal=2)
1262 1263 1264 1265
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1266 1267

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1268
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1269 1270 1271 1272
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1273 1274

    """
F
From00 已提交
1275
    if in_dygraph_mode():
1276
        return _C_ops.triu(x, diagonal, False)
F
From00 已提交
1277 1278

    if _in_legacy_dygraph():
1279
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1280
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1281 1282

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1283 1284


1285
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1286
    """
1287

1288
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1289

S
suytingwan 已提交
1290
    Args:
1291
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1292
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1293
        **kwargs (optional): Currently, only accept name in **kwargs
1294
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1295
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1296

S
suytingwan 已提交
1297
    Returns:
Y
yaoxuefeng 已提交
1298
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1299 1300 1301 1302 1303 1304

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1305 1306 1307 1308
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1309

Y
yaoxuefeng 已提交
1310 1311
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1312 1313 1314 1315 1316 1317

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1318 1319
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1320
    if _in_legacy_dygraph():
1321
        num = len(args)
1322
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1323
        return out
Y
YuanRisheng 已提交
1324
    if in_dygraph_mode():
1325
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1326

1327
    name = kwargs.get("name", None)
S
suytingwan 已提交
1328 1329
    helper = LayerHelper('meshgrid', **locals())

1330 1331
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1332

1333
    for id, input_ in enumerate(args):
1334 1335 1336 1337 1338 1339
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1340

1341
    num = len(args)
S
suytingwan 已提交
1342
    out = [
1343
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1344 1345
        for i in range(num)
    ]
1346 1347 1348
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1349 1350

    return out
1351 1352


L
Li Min 已提交
1353 1354
def diagflat(x, offset=0, name=None):
    """
1355
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1371
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1372 1373 1374 1375 1376 1377

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1378
            :name: code-example-1
L
Li Min 已提交
1379

1380 1381 1382 1383
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1384 1385 1386 1387 1388
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1389 1390

            y = paddle.diagflat(x, offset=1)
1391 1392 1393 1394 1395 1396
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1397 1398

            y = paddle.diagflat(x, offset=-1)
1399 1400 1401 1402 1403 1404
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1405 1406

        .. code-block:: python
1407
            :name: code-example-2
L
Li Min 已提交
1408

1409
            import paddle
L
Li Min 已提交
1410

1411 1412
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1413 1414 1415 1416 1417 1418
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1419 1420

            y = paddle.diagflat(x, offset=1)
1421 1422 1423 1424 1425 1426 1427
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1428 1429

            y = paddle.diagflat(x, offset=-1)
1430 1431 1432 1433 1434 1435 1436
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1437 1438
    """
    padding_value = 0
1439 1440
    if in_dygraph_mode():
        if len(x.shape) == 1:
1441
            return _C_ops.diag(x, offset, padding_value)
1442
        else:
1443 1444
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1445 1446

    if _in_legacy_dygraph():
L
Li Min 已提交
1447
        if len(x.shape) == 1:
1448 1449 1450
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1451
        else:
1452
            y, _ = _legacy_C_ops.flatten_contiguous_range(
1453 1454 1455 1456 1457
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1458 1459

    check_type(x, 'x', (Variable), 'diagflat')
1460 1461 1462
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1463 1464 1465 1466 1467 1468 1469 1470
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1471 1472 1473 1474 1475 1476
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1477
    else:
1478 1479 1480 1481 1482 1483
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1484 1485
        out1.stop_gradient = True

1486 1487 1488 1489 1490 1491
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1492 1493 1494 1495
    out2.stop_gradient = True
    return out2


1496 1497
def diag(x, offset=0, padding_value=0, name=None):
    """
1498
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1514
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1515

1516 1517 1518 1519 1520
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1521
            :name: code-example-1
1522

1523
            import paddle
1524

1525 1526 1527
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1528 1529 1530 1531 1532
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1533 1534

            y = paddle.diag(x, offset=1)
1535 1536 1537 1538 1539 1540
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1541 1542

            y = paddle.diag(x, padding_value=6)
1543 1544 1545 1546 1547
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1548 1549

        .. code-block:: python
1550
            :name: code-example-2
1551

1552
            import paddle
1553

1554 1555 1556
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1557 1558 1559
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1560

1561
            y = paddle.diag(x, offset=1)
1562 1563 1564
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1565

1566
            y = paddle.diag(x, offset=-1)
1567 1568 1569
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1570
    """
J
Jiabin Yang 已提交
1571
    if in_dygraph_mode():
1572
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1573 1574
    else:
        if _in_legacy_dygraph():
1575 1576 1577
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1578 1579
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
1580 1581 1582 1583 1584 1585
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1586 1587 1588 1589
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1590 1591 1592 1593
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1594

J
Jiabin Yang 已提交
1595
            helper = LayerHelper("diag_v2", **locals())
1596

J
Jiabin Yang 已提交
1597
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1598

1599 1600 1601 1602 1603 1604
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1605

J
Jiabin Yang 已提交
1606 1607
            out.stop_gradient = True
            return out
1608 1609 1610 1611


def empty(shape, dtype=None, name=None):
    """
1612
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1613

1614
    Args:
1615 1616 1617
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1618 1619 1620 1621
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1622
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1623

1624 1625 1626 1627 1628 1629
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1630
            import paddle
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1651 1652 1653 1654 1655 1656 1657
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1658 1659
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1660 1661 1662
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1663 1664 1665 1666
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1667
        shape = utils.convert_shape_to_list(shape)
1668 1669 1670
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1671 1672 1673 1674 1675 1676
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

1677 1678 1679 1680 1681 1682
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1683 1684 1685 1686 1687 1688
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1689 1690 1691
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1692 1693 1694

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1695 1696 1697 1698 1699 1700 1701
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1702 1703
    out.stop_gradient = True
    return out
1704 1705 1706 1707


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1708
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1709
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1710

1711 1712 1713
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1714
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1715
            data type is the same as input.
1716
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1738
    if in_dygraph_mode():
1739 1740 1741 1742 1743
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1744 1745 1746 1747
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1748 1749 1750
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1751 1752 1753 1754 1755
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1767 1768 1769 1770 1771 1772
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1784 1785
    out.stop_gradient = True
    return out
1786 1787 1788 1789


def assign(x, output=None):
    """
1790

1791
    Copy value of the :attr:`x` to the :attr:`output`.
1792

1793
    Parameters:
1794 1795
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1796
            data limitation.
1797
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1798

1799
    Returns:
1800
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1801

1802 1803
    Examples:
        .. code-block:: python
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1815
    """
1816 1817
    input = x
    helper = LayerHelper('assign', **locals())
1818 1819 1820 1821 1822 1823
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1835
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1836
        if in_dygraph_mode():
1837
            if output is None:
1838
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1839
            else:
1840
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1841 1842 1843
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1844
            _legacy_C_ops.assign(input, output)
1845
        else:
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1862 1863
            if output is None:
                output = helper.create_variable_for_type_inference(
1864 1865 1866 1867 1868
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1869
    elif isinstance(input, np.ndarray):
1870
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1871
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1872
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1873 1874 1875 1876
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1877
                    if isinstance(x, (Variable, core.eager.Tensor))
1878 1879
                ]
            ):
1880 1881 1882 1883 1884
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1885
                if not isinstance(x, (Variable, core.eager.Tensor)):
1886 1887 1888 1889 1890 1891 1892 1893 1894
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
1895
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1896
            raise TypeError(
1897
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1898
            )
1899

1900 1901 1902 1903 1904 1905 1906
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
1907 1908
                "it to float32"
            )
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
1926 1927
                "received %s." % convert_dtype(dtype)
            )
1928
        if input.size > 1024 * 1024:
1929 1930 1931 1932
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1933 1934 1935
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1936 1937 1938 1939 1940 1941 1942
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1943 1944 1945
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1946 1947 1948 1949 1950 1951 1952 1953 1954
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1955
        else:
1956 1957
            if output is None:
                output = helper.create_variable_for_type_inference(
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1969

Z
zyfncg 已提交
1970
    if is_inplace and _in_legacy_dygraph():
1971 1972 1973
        output._bump_inplace_version()

    return output
1974 1975


1976 1977
def clone(x, name=None):
    """
1978 1979
    Returns a copy of input Tensor. It will always have a Tensor copy.

1980 1981 1982 1983
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1984
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1985

1986
    Returns:
1987
        Tensor, A Tensor copied from ``input``.
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2006
# NOTE(zhiqiu): not public
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2020
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2021 2022 2023 2024 2025

    Examples:
        .. code-block:: python

          import paddle
2026

2027 2028 2029 2030 2031 2032 2033
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
2071 2072 2073 2074 2075 2076
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2077
    return output
F
Feiyu Chan 已提交
2078 2079 2080 2081 2082 2083 2084 2085


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2086
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2087 2088 2089 2090

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2091 2092 2093 2094
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2095 2096 2097 2098 2099 2100 2101 2102

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2103 2104 2105 2106
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2107
    """
2108
    if in_dygraph_mode():
2109
        return _C_ops.complex(real, imag)
2110

Z
zhiboniu 已提交
2111
    if paddle.in_dynamic_mode():
2112
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2113 2114 2115 2116 2117 2118 2119 2120

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
2121 2122
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2123 2124 2125 2126
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2127 2128 2129 2130


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2131 2132
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2133 2134
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2135

2136 2137 2138 2139 2140
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2141 2142 2143 2144
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2155

2156 2157 2158
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2159
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2160 2161 2162 2163 2164
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2165
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2190 2191 2192
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2193 2194 2195
        return out

    if _in_legacy_dygraph():
2196 2197 2198
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2199 2200 2201 2202 2203 2204 2205
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2206 2207 2208 2209 2210 2211
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2212
    return out
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2274 2275 2276
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2277 2278 2279
        return out

    if _in_legacy_dygraph():
2280 2281 2282
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2283 2284 2285 2286 2287 2288 2289
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2290 2291 2292 2293 2294 2295
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2296
    return out