operator.cc 115.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
53
#include "paddle/fluid/platform/mkldnn_op_list.h"
54 55
#endif

F
fwenguang 已提交
56 57 58 59
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
60
DECLARE_bool(benchmark);
61
DECLARE_bool(check_nan_inf);
62
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
64
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
65

Q
Qiao Longfei 已提交
66 67 68
namespace paddle {
namespace framework {

69 70 71 72 73 74
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
75

76
static DDim GetDimsDebug(const Scope& scope,
77
                         const std::string& name,
78
                         bool get_actual_dim = false) {
79
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
80 81
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
82 83
  }

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
87
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
88
    if (get_actual_dim) {
89
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
90
    } else {
91
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
92
    }
S
Steffy-zxf 已提交
93 94
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
95 96 97 98 99
  } else {
    return DDim({-1});
  }
}

100
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
101 102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

106
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
111

M
minqiyang 已提交
112 113 114
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
115 116
      return "";
    }
117
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
118 119
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
120 121 122
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
123
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
124
    }
S
Steffy-zxf 已提交
125 126
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
127 128 129 130 131
  } else {
    return "";
  }
}

132
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
149 150
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
151 152 153 154 155 156 157 158 159 160
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

161
static int GetRowSize(const Scope& scope, const std::string& name) {
162 163 164 165 166
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

167 168
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
169 170 171 172 173
  }

  return -1;
}

174
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
175 176 177 178 179 180 181
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
182 183 184
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
185 186 187 188 189
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
190 191 192 193 194
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
195
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
196 197 198 199 200 201
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
202
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
203 204 205 206 207 208
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

209
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
210 211 212
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
214 215 216 217
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
218
#else
219
      auto dev_id = place.device;
P
peizhilin 已提交
220
      platform::SetDeviceId(dev_id);
221 222 223
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
224 225 226 227
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
228
#else
229
      auto dev_id = place.device;
230
      platform::SetXPUDeviceId(dev_id);
231 232 233 234 235 236 237 238
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
239
      auto dev_id = place.device;
240
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
241 242 243 244 245 246 247 248
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
249
      auto dev_id = place.device;
F
fwenguang 已提交
250
      platform::SetMLUDeviceId(dev_id);
251 252 253 254 255 256 257 258
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
259
      phi::DeviceManager::SetDevice(place);
260
#endif
P
peizhilin 已提交
261
    }
P
peizhilin 已提交
262

263
    {
264 265 266
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
267
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
268
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
269 270
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
271 272
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
273
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
274
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
275 276
      RunImpl(scope, place);
    }
277

Z
Zhang Ting 已提交
278
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
279
  } catch (platform::EnforceNotMet& exception) {
280
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
281
    throw std::move(exception);
282 283 284 285 286 287
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
288
  } catch (...) {
289
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
290
    std::rethrow_exception(std::current_exception());
291
  }
292 293
}

294
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
295
  return inputs_.find(name) != inputs_.end();
296 297
}

298
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
299
  auto& ins = Inputs(name);
300
  PADDLE_ENFORCE_LE(
301 302
      ins.size(),
      1UL,
303
      platform::errors::InvalidArgument(
304 305
          "Operator %s's input %s should contain only one variable.",
          type_,
306
          name));
Y
Yu Yang 已提交
307
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
308 309
}

Y
Yu Yang 已提交
310 311
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
312
  auto it = inputs_.find(name);
313
  PADDLE_ENFORCE_NE(
314 315 316 317
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
318
  return it->second;
Y
Yan Chunwei 已提交
319 320
}

321
bool OperatorBase::HasOutputs(const std::string& name) const {
322
  if (outputs_.find(name) != outputs_.end()) {
323 324 325 326 327 328
    return true;
  } else {
    return false;
  }
}

329
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
330
  auto& outs = Outputs(name);
331
  PADDLE_ENFORCE_LE(
332 333
      outs.size(),
      1UL,
334
      platform::errors::InvalidArgument(
335 336
          "Operator %s's output %s should contain only one variable.",
          type_,
337
          name));
Y
Yu Yang 已提交
338
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
339 340
}

Y
Yu Yang 已提交
341 342
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
343
  auto it = outputs_.find(name);
344
  PADDLE_ENFORCE_NE(
345 346
      it,
      outputs_.end(),
347 348
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
349
  return it->second;
Y
Yan Chunwei 已提交
350 351
}

352
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
353
  std::stringstream ss;
Y
Yu Yang 已提交
354
  ss << "Op(" << type_ << "), inputs:{";
355

356
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
357 358
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
359 360
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
361 362
  }

Y
Yu Yang 已提交
363 364
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
365 366
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
367 368
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
369 370
      auto var_name = input.second[i];
      ss << var_name;
371
      if (scope) {
Q
Qiao Longfei 已提交
372 373 374 375 376 377 378
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
379 380 381
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
382
          ss << ":" << dtype;
383 384
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
385
          ss << "(" << GetPlace(*scope, var_name) << ")";
386
        }
387
      }
Y
Yu Yang 已提交
388 389 390
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
391
    }
Y
Yu Yang 已提交
392
    ss << "]";
Y
Yu Yang 已提交
393 394
    ++it;
    if (it != inputs_.end()) {
395 396
      ss << ", ";
    }
Q
Qiao Longfei 已提交
397
  }
Y
Yu Yang 已提交
398
  ss << "}, outputs:{";
Y
Yu Yang 已提交
399 400
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
401 402
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
403 404
      auto var_name = output.second[i];
      ss << var_name;
405
      if (scope) {
Q
Qiao Longfei 已提交
406 407 408 409 410 411 412
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
413 414
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
415 416
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
417
          ss << "(" << GetPlace(*scope, var_name) << ")";
418
        }
419
      }
Y
Yu Yang 已提交
420 421 422
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
423
    }
Y
Yu Yang 已提交
424
    ss << "]";
Y
Yu Yang 已提交
425 426
    ++it;
    if (it != outputs_.end()) {
427 428
      ss << ", ";
    }
Q
Qiao Longfei 已提交
429
  }
Y
Yu Yang 已提交
430
  ss << "}.";
Q
Qiao Longfei 已提交
431 432 433
  return ss.str();
}

Y
Yu Yang 已提交
434
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
435 436
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
437
                           const AttributeMap& attrs)
S
sneaxiy 已提交
438 439 440 441 442 443
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
444 445 446 447 448 449 450 451
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
452
  // In OperatorBase level, all attributes with VarDesc type will be considered
453 454 455 456 457 458
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
459
}
460

Q
qijun 已提交
461 462
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
463
  for (auto& o : inputs_) {
Q
qijun 已提交
464 465 466 467 468 469
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
470 471 472 473 474 475 476 477 478 479
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
480
  auto& info = Info();
Y
Yu Yang 已提交
481 482

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
483
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
484 485 486 487 488 489 490 491 492
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
493 494
}

495
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
496
  if (info_ == nullptr || info_->proto_ == nullptr) return;
497

S
sneaxiy 已提交
498
  for (auto& in : info_->Proto().inputs()) {
499
    if (!in.dispensable() && !in.extra()) {
500
      PADDLE_ENFORCE_NE(
501 502 503 504
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
505
    }
506 507
  }

S
sneaxiy 已提交
508
  for (auto& out : info_->Proto().outputs()) {
509
    if (!out.dispensable() && !out.extra()) {
510
      PADDLE_ENFORCE_NE(
511 512 513 514
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
515
    }
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
531

532 533
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
C
chengduo 已提交
534
  if (var.IsType<LoDTensor>()) {
535
    return static_cast<const phi::DenseTensor*>(&(var.Get<LoDTensor>()));
536 537
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
538
  } else {
539 540 541
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
542 543 544
  }
}

545
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
546
  if (var->IsType<LoDTensor>()) {
547
    return var->GetMutable<LoDTensor>();
548 549
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
550
  } else {
551 552 553
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
554 555 556
  }
}

557
bool ExecutionContext::HasInput(const std::string& name) const {
558
  auto* var = InputVar(name);
559 560 561
  return var != nullptr;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

576
bool ExecutionContext::HasOutput(const std::string& name) const {
577
  auto* var = OutputVar(name);
578 579 580
  return var != nullptr;
}

X
Xin Pan 已提交
581
const Variable* ExecutionContext::InputVar(const std::string& name) const {
582 583
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
584 585 586
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

587
  PADDLE_ENFORCE_LE(
588 589
      it->second.size(),
      1UL,
590
      platform::errors::InvalidArgument(
591
          "Operator %s's input %s should contain only one variable.",
592 593
          op_.Type(),
          name));
X
Xin Pan 已提交
594 595 596
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
597
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
598 599 600
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

601
  PADDLE_ENFORCE_LE(
602 603
      it->second.size(),
      1UL,
604 605
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
606 607
          op_.Type(),
          name));
X
Xin Pan 已提交
608 609 610
  return it->second.empty() ? nullptr : it->second[0];
}

611
template <>
612 613
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
614 615
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
616 617
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
618 619
    return {};
  }
620
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
621
  res.reserve(vars.size());
622 623 624
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
625
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
626
                   if (var == nullptr) return nullptr;
627 628
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
629 630 631 632
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
633 634 635 636 637
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

638
template <>
639
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
640
    const std::string& name) const {
H
hong 已提交
641 642 643
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
644 645
    return {};
  }
646
  std::vector<phi::DenseTensor*> res;
647
  res.reserve(vars.size());
648 649 650
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
651
                 [&](Variable* var) -> phi::DenseTensor* {
652 653
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
654
                 });
655 656 657
  return res;
}

Y
Yu Yang 已提交
658
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
659
  // check in new Function kernel first
660
  bool has_phi_kernel = false;
661
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
662
  auto kernel_key_map =
663
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
664
  for (auto& kernel : kernel_key_map) {
665
    has_phi_kernel = true;
666
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
667 668 669 670
      return true;
    }
  }

Y
Yu Yang 已提交
671 672
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
673 674 675 676 677 678 679 680 681 682 683 684 685
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
686 687 688
      return true;
    }
  }
H
hong 已提交
689

Y
Yu Yang 已提交
690 691 692
  return false;
}

693 694
class RuntimeInferShapeContext : public InferShapeContext {
 public:
695
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
696
      : op_(op), ctx_(ctx) {}
697 698

  bool HasInput(const std::string& name) const override {
699
    // has only one input
X
Xin Pan 已提交
700
    const auto& ins = ctx_.inputs;
701 702
    auto it = ins.find(name);
    if (it == ins.end()) {
703 704
      return false;
    }
705
    const auto& in = it->second;
X
Xin Pan 已提交
706
    if (in.size() == 0) return false;
707
    PADDLE_ENFORCE_EQ(
708 709
        in.size(),
        1UL,
710 711
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
712
    return in[0] != nullptr;
713 714 715
  }

  bool HasOutput(const std::string& name) const override {
716
    // has only one output
X
Xin Pan 已提交
717
    const auto& outs = ctx_.outputs;
718 719
    auto it = outs.find(name);
    if (it == outs.end()) {
720 721
      return false;
    }
722
    const auto& out = it->second;
X
Xin Pan 已提交
723
    if (out.size() == 0) {
724 725
      return false;
    }
726
    PADDLE_ENFORCE_EQ(
727 728
        out.size(),
        1UL,
729 730
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
731
    return out[0] != nullptr;
732 733
  }

734 735 736 737
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

738
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
739 740
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
741
    if (it == ins.end() || it->second.empty()) {
742 743
      return false;
    }
X
Xin Pan 已提交
744 745
    for (auto& input : it->second) {
      if (input == nullptr) {
746 747 748 749 750 751
        return false;
      }
    }
    return true;
  }

752 753
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
754 755
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
756
    if (it == outs.end() || it->second.empty()) {
757 758
      return false;
    }
Y
YuanRisheng 已提交
759
    if (!allow_null) {
760 761
      for (auto& output : it->second) {
        if (output == nullptr) return false;
762 763
      }
    }
Y
YuanRisheng 已提交
764
    return true;
765 766
  }

767 768 769
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
770

H
hong 已提交
771
  std::vector<std::string> Inputs(const std::string& name) const override {
772 773 774
    return op_.Inputs(name);
  }

H
hong 已提交
775
  std::vector<std::string> Outputs(const std::string& name) const override {
776 777 778
    return op_.Outputs(name);
  }

779 780 781
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
782 783
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
784 785 786
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
787 788 789
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
790 791 792 793 794 795 796
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
797 798
        idx,
        op_proto->outputs().size(),
799 800 801
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
802 803 804
            op_.Type(),
            idx,
            op_proto->outputs().size()));
805 806 807
    return op_proto->outputs()[idx].name();
  }

808 809 810
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
811
                size_t j = 0) override {
X
Xin Pan 已提交
812 813
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
814
    PADDLE_ENFORCE_NE(
815 816
        in_it,
        ctx_.inputs.end(),
817 818
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
819 820
        out_it,
        ctx_.outputs.end(),
821
        platform::errors::NotFound("Output %s does not exist.", out));
822 823
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
824 825 826
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
827 828 829 830
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
831 832 833
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
834 835
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
836 837 838

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
839

840
    PADDLE_ENFORCE_EQ(
841 842
        in_var->Type(),
        out_var->Type(),
843
        platform::errors::InvalidArgument(
844 845
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
846
            out));
847

848 849 850
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
851 852 853
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
854 855 856
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
857 858
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
859
      PADDLE_THROW(platform::errors::Unimplemented(
860
          "Currently, the input type of ShareDim only can be LoDTensor "
861
          "or SelectedRows."));
862 863 864
    }
  }

H
hong 已提交
865 866 867 868
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
869 870
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
871 872 873
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
874 875 876 877
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
878 879 880 881 882

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
883 884
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
885
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
886
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
887 888 889 890 891 892 893 894 895 896 897 898
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
899 900
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
901 902
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
903 904
                            i,
                            out_var_names[i]));
H
hong 已提交
905 906 907 908 909 910 911 912 913 914
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

915 916 917
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
918
                size_t j = 0) const override {
X
Xin Pan 已提交
919 920
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
921
    PADDLE_ENFORCE_NE(
922 923
        in_it,
        ctx_.inputs.end(),
924 925
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
926 927
        out_it,
        ctx_.outputs.end(),
928
        platform::errors::NotFound("Output %s does not exist.", out));
929 930
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
931 932 933
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
934 935 936 937
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
938 939 940
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
941 942
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
943 944

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
945
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
946
    Variable* out_var = out_it->second.at(j);
947
    PADDLE_ENFORCE_EQ(
948 949
        out_var->IsType<LoDTensor>(),
        true,
950 951
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
952
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
953 954
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
955

M
mozga-intel 已提交
956 957
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
958
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
975 976
  }

977
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
978
    PADDLE_THROW(platform::errors::PreconditionNotMet(
979
        "GetLoDLevel is only used in compile time. The calculation of "
980
        "output's actual lod is different among operators so that should be "
981
        "set in the runtime kernel."));
982 983
  }

984 985
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
986
                   size_t j = 0) const override {
987
    PADDLE_THROW(platform::errors::PreconditionNotMet(
988
        "SetLoDLevel is only used in compile time. The calculation of "
989
        "output's actual lod is different among operators so that should be "
990
        "set in the runtime kernel."));
C
chengduo 已提交
991 992
  }

993 994
  bool IsRuntime() const override { return true; }

995 996 997 998 999 1000
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
1001
    } catch (const std::bad_cast& exp) {
1002 1003 1004 1005
      return false;
    }
  }

1006
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1007
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1008
  GetInputVarPtrs(const std::string& name) const override {
1009
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1010
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1011 1012 1013 1014 1015
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1016
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1017
  GetOutputVarPtrs(const std::string& name) const override {
1018
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1019
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1020 1021 1022 1023 1024
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1025 1026
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1027
    PADDLE_ENFORCE_EQ(
1028 1029
        vars.size(),
        1UL,
1030 1031
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1032 1033
            name,
            vars.size()));
X
Xin Pan 已提交
1034 1035 1036 1037 1038 1039 1040 1041
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1042 1043 1044 1045
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1056 1057
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1058
    PADDLE_ENFORCE_EQ(
1059 1060
        vars.size(),
        1UL,
1061 1062
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1063 1064
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1074 1075 1076 1077 1078 1079 1080 1081
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1082
 protected:
X
Xin Pan 已提交
1083
  DDim GetDim(Variable* var) const {
1084 1085
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1086 1087
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1088 1089
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1090
    } else {
1091 1092 1093 1094
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1095 1096 1097
    }
  }

X
Xin Pan 已提交
1098 1099 1100
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1101 1102 1103
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1104 1105 1106 1107
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1108
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1109 1110
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1111 1112
  }

X
Xin Pan 已提交
1113
  void SetDim(Variable* var, const DDim& dim) {
1114 1115
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1116 1117
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1118
    } else {
1119 1120 1121 1122
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1123 1124 1125 1126 1127 1128
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1129 1130
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1131 1132 1133 1134
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1135 1136
                          length,
                          dims.size()));
X
Xin Pan 已提交
1137 1138 1139 1140 1141
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1142 1143 1144
    }
  }

F
fengjiayi 已提交
1145 1146
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1147 1148
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1149 1150
  }

X
Xin Pan 已提交
1151 1152 1153 1154
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1155 1156 1157
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1158
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1159 1160
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1161 1162 1163 1164
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1165 1166 1167
    return ToVarType(var->Type());
  }

1168 1169 1170
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1171
    PADDLE_ENFORCE_NE(
1172 1173
        it,
        ctx_.inputs.end(),
1174 1175
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1176 1177 1178 1179 1180
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1181
    PADDLE_ENFORCE_NE(
1182 1183
        it,
        ctx_.outputs.end(),
1184 1185
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1186
    return it->second;
F
fengjiayi 已提交
1187 1188
  }

1189
  const OperatorBase& op_;
X
Xin Pan 已提交
1190
  const RuntimeContext& ctx_;
1191 1192
};

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1208 1209
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1210
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1211 1212 1213
  if (tensor.memory_size() == 0) {
    return;
  }
1214 1215
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1216 1217
    return;
  }
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1230 1231
}

1232 1233 1234 1235
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1236 1237
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1250 1251
          op_kernels.begin(),
          op_kernels.end(),
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1263 1264
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1277 1278
          op_kernels.begin(),
          op_kernels.end(),
1279 1280 1281 1282 1283 1284 1285
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1323 1324
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1325 1326 1327 1328 1329
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1330 1331 1332 1333
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
                           kern_pair.first.dtype() ==
                               framework::TransToPhiDataType(data_type);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1352
  }
1353 1354
}

1355
bool OperatorWithKernel::SupportsKernelType(
1356
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1357 1358
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1359 1360 1361 1362 1363
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1364
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1365 1366 1367
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1368 1369
  }
#endif
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition: The first statement checks whether library_type_
// are changed by other high priority backends; the second checks whether this
// op has specific implementation; the third checks whether mkldnn kernel can be
// used.
#ifdef PADDLE_WITH_MKLDNN
  if (kernel_type.library_type_ == framework::LibraryType::kPlain &&
      !paddle::platform::in_mkldnn_white_list(type_) &&
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
    tmp_kernel_type.data_layout_ = framework::DataLayout::kMKLDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1407
  return kernel_iter != kernels.end();
1408 1409
}

1410 1411
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1412 1413 1414 1415 1416 1417 1418
  // NOTE(jiahongyu): Only mkldnn kernels need to check "use_mkldnn" attribute,
  // hence we first call function SupportsMKLDNN. If we check "use_mkldnn"
  // attribute first, it will cause error because some codes add "use_mkldnn"
  // attribute to non-mkldnn ops.
  if (!this->SupportsMKLDNN(data_type)) {
    return false;
  }
1419
  const std::string use_mkldnn_attr = "use_mkldnn";
1420 1421
  return ctx.HasAttr(use_mkldnn_attr) && ctx.Attr<bool>(use_mkldnn_attr) &&
         platform::is_cpu_place(ctx.GetPlace());
1422 1423
}

1424 1425 1426 1427 1428 1429 1430
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1431
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1432 1433
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1434
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1435
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1436 1437
}

L
luotao1 已提交
1438 1439
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1440 1441
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1442 1443 1444
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1445
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1446
    all_kernels_must_compute_runtime_shape_ = true;
1447
  const Scope* cur_scope = &scope;
1448
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1449 1450
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1451
    pre_scope_ = cur_scope;
1452 1453 1454 1455 1456
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1457
  } else {
1458 1459 1460 1461 1462 1463
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1464
    }
1465
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1466 1467 1468 1469 1470 1471
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1472
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1473
  bool fallback_to_cpu = false;
1474
  auto* dev_ctx = pool.Get(place);
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1486
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1487 1488 1489 1490
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1491

1492 1493 1494 1495 1496 1497
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1498 1499 1500 1501 1502
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1503 1504
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1505
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1506
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1507 1508 1509
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1510 1511 1512 1513 1514

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1515
      phi_kernel_name = kernel_signature_->name;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1538
                  << phi_kernel_name
1539
                  << ", using_kernel_key:" << *kernel_type_.get();
1540
          auto try_phi_kernel_key =
1541
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1542 1543
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1544 1545
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1546
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1547 1548 1549
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1550
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1551 1552 1553 1554
          }
        }
      }
#endif
1555 1556
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1557
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1558
              phi_kernel_name, phi_kernel_key)));
1559

1560
      if (phi_kernel_->IsValid()) {
1561
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1562 1563
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1564
      } else {
1565
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1566 1567
                << "` not found.";
      }
1568
    } else {
1569
      phi_kernel_name = kernel_signature_->name;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
// LibraryType::kMKLDNN and data_layout_ = DataLayout::kMKLDNN. But the default
// values are kPlain, so we need to modify the library_type and data_layout_
// here. There are three statements in if condition: The first statement checks
// whether library_type_ are changed by other high priority backends; the second
// checks whether this op has specific implementation; the third checks whether
// mkldnn kernel can be used.
#ifdef PADDLE_WITH_MKLDNN
      if (kernel_type_->library_type_ == framework::LibraryType::kPlain &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
        kernel_type_->data_layout_ = framework::DataLayout::kMKLDNN;
      }
#endif

1587 1588 1589
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1608
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1609
                  << phi_kernel_name
1610
                  << ", using_kernel_key:" << *kernel_type_.get();
1611
          auto try_phi_kernel_key =
1612
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1613 1614
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1615
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1616
            VLOG(3) << "modify XPU KP kernel in static graph: "
1617
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1618 1619 1620
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1621
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1622 1623 1624 1625
          }
        }
      }
#endif
1626
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1627
    }
1628 1629 1630 1631

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1632
#if defined(PADDLE_WITH_XPU)
1633 1634 1635 1636 1637
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1649
    if (phi_kernel_->IsValid()
1650
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1651 1652
        && !is_xpu_unsupport
#endif
1653 1654 1655
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1656
    ) {
1657
      run_phi_kernel_ = true;
1658 1659 1660
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1671 1672 1673
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1674
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1675
          || is_xpu_unsupport
1676
#endif
1677 1678 1679
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1680
      ) {
1681
        fallback_to_cpu = true;
1682 1683 1684
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1685
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1686
                phi_kernel_name, phi_cpu_kernel_key)));
1687 1688

        dev_ctx = pool.Get(platform::CPUPlace());
1689 1690 1691 1692
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1693
          run_phi_kernel_ = true;
1694 1695
        }
      }
1696 1697
    }
  }
1698
  if (!run_phi_kernel_) {
1699 1700
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1701
      dev_ctx = pool.Get(kernel_type_->place_);
1702
    }
1703 1704
  }

Y
yuyang18 已提交
1705 1706
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1707 1708
  Scope* transfer_scope = nullptr;
  {
1709
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1710
                                       platform::TracerEventType::OperatorInner,
1711 1712
                                       1,
                                       platform::EventRole::kInnerOp);
1713
    if (need_prepare_data_) {
1714 1715
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1716
    }
1717
  }
Y
yuyang18 已提交
1718 1719 1720 1721
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1722
  if (!all_kernels_must_compute_runtime_shape_) {
1723
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1724
                                       platform::TracerEventType::OperatorInner,
1725 1726
                                       1,
                                       platform::EventRole::kInnerOp);
1727
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1728
    this->Info().infer_shape_(&infer_shape_ctx);
1729 1730 1731
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1732
  }
1733 1734 1735 1736 1737

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1738 1739
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1740
  {
1741
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1742
                                       platform::TracerEventType::OperatorInner,
1743 1744
                                       1,
                                       platform::EventRole::kInnerOp);
1745
    if (run_phi_kernel_) {
1746
      phi::KernelContext phi_kernel_context;
1747 1748
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1749 1750 1751
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1752
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1753
        (*phi_kernel_)(impl_->getKernelContext());
1754
      } else {
1755
        phi::KernelContext phi_kernel_context;
1756 1757
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1758 1759
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1760
      }
1761 1762 1763 1764
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1765 1766 1767
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1768
  }
D
dzhwinter 已提交
1769

Y
yuyang18 已提交
1770
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1771
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1772
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1773
  }
1774 1775 1776 1777 1778 1779 1780

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1781 1782 1783 1784 1785 1786 1787 1788
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1789

D
dzhwinter 已提交
1790
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1791
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1792
    dev_ctx->Wait();
1793 1794
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1795 1796
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1797
  }
C
chengduoZH 已提交
1798 1799

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1800
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1801
  }
1802 1803 1804 1805 1806 1807 1808

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1809
}
X
Xin Pan 已提交
1810

1811 1812 1813
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
// data_layout_ of expected_kernel_key need to be adjusted. There are three
// statements in if condition: The first statement checks whether library_type_
// are changed by other high priority backends; the second checks whether this
// op has specific implementation; the third checks whether mkldnn kernel can be
// used.
#ifdef PADDLE_WITH_MKLDNN
  if (expected_kernel_key.library_type_ == framework::LibraryType::kPlain &&
      !paddle::platform::in_mkldnn_white_list(type_) &&
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
    expected_kernel_key.data_layout_ = framework::DataLayout::kMKLDNN;
  }
#endif

1831 1832 1833
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1844 1845 1846
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1847 1848
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1849
      if (SupportGPU()) {
1850
        auto& dev_ctx = ctx.device_context();
1851
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1852 1853
      }
#endif
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1873 1874 1875
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1876
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1877 1878 1879
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1880 1881
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1908 1909 1910
      }
    }
  }
C
cc 已提交
1911 1912
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1913 1914 1915
  return expected_kernel_key;
}

1916
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1917
    const ExecutionContext& ctx) const {
1918 1919 1920
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1921 1922 1923 1924

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1925 1926 1927 1928
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1929

1930 1931 1932 1933
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1934
  } else {
1935
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1936 1937
            << "` not found.";
  }
1938
  return phi_kernel_key;
1939 1940 1941 1942 1943 1944 1945
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1946 1947
      kernels_iter,
      all_op_kernels.end(),
1948
      platform::errors::Unimplemented(
1949 1950 1951 1952 1953 1954
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1955 1956

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1957

L
Liu Yiqun 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1967
#endif
1968 1969

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1970
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1971 1972 1973
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1974
    VLOG(3) << "fluid missing XPU kernel: " << type_
1975 1976 1977 1978 1979
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1980
#endif
L
Liu-xiandong 已提交
1981 1982

#ifdef PADDLE_WITH_XPU_KP
1983 1984 1985 1986 1987 1988 1989
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1990
      VLOG(3) << "fluid xpu_kp using rt mode ";
1991 1992
    }
    if (use_xpu_kp_kernel_debug) {
1993
      VLOG(3) << "fluid xpu_kp using debug mode ";
1994 1995 1996
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1997 1998
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1999 2000
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2001
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2002
      // if the fluid do not register related kernel, it can't work and have
2003 2004 2005 2006 2007 2008 2009
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2010
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2011 2012
                << ", using_kernel_key:" << expected_kernel_key;
      }
2013 2014 2015 2016 2017 2018
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2019
      VLOG(3) << "fluid missing XPU kernel: " << type_
2020 2021 2022 2023 2024
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2025 2026 2027
  }
#endif

A
Allen Guo 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2038 2039
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2040
      platform::is_npu_place(expected_kernel_key.place_)) {
2041 2042 2043 2044 2045 2046
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2047 2048 2049
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2050
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2051 2052 2053
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2065 2066 2067
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2068
#endif
2069 2070 2071 2072 2073 2074
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2075

2076 2077 2078 2079 2080
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2081 2082
}

Y
yuyang18 已提交
2083
void OperatorWithKernel::TransferInplaceVarsBack(
2084 2085
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2086 2087
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2088
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2089
    auto* origin_var = scope.FindVar(var_name);
2090 2091 2092
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2093
    auto* original_tensor =
C
chengduo 已提交
2094
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2095
    auto* var = transfer_scope.FindVar(var_name);
2096 2097 2098
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2099
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2100
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2101
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2102 2103 2104 2105 2106
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2107 2108 2109
  }
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2139
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2159
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2170
      phi::DenseTensor out;
2171 2172 2173 2174 2175 2176
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2177
Scope* OperatorWithKernel::PrepareData(
2178 2179
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2180 2181
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2182
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2183

2184
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2185 2186 2187 2188
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2189 2190
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2191 2192 2193
    }
  }

2194 2195 2196 2197 2198 2199 2200 2201 2202
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2203

Y
yuyang18 已提交
2204
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2205
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2206 2207 2208
        continue;
      }

C
chengduo 已提交
2209
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2210

2211
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2225
            (paddle::platform::MKLDNNDeviceContext::tls()
2226 2227
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2228 2229 2230 2231 2232
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2233
          in_vars->at(i) = trans_var;
2234 2235
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2236 2237
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2238 2239
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN "
                     "phi::DenseTensor , "
2240
                     "but kNHWC layout"
2241
                  << in_name << " in Operator " << type_;
2242
        } else {
2243 2244
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2245 2246 2247 2248 2249
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2250 2251 2252 2253
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2267

2268 2269 2270 2271 2272
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2273 2274
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2275 2276 2277
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2292 2293
      }

M
minqiyang 已提交
2294
      VLOG(3) << "Transform Variable " << var_name << " from "
2295 2296 2297
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2298

H
HongyuJia 已提交
2299 2300 2301
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2302
      // We use a thread_local cache to fix that issue, the key in the cache is
2303 2304 2305 2306 2307
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2308 2309
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2310
      // variables, that behavior a lot different.
2311 2312 2313 2314 2315 2316
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2331
      }
2332

2333
      if (!new_scope) {
Y
yuyang18 已提交
2334 2335
        new_scope = &scope.NewScope();
      }
2336 2337 2338 2339
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2340
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2341 2342
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2343
      if (enable_cache_runtime_context_) {
2344 2345
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2346 2347

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2348
      auto* trans_var = new_scope->Var(var_name);
2349
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2350 2351 2352 2353 2354 2355 2356

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2357
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2367
      phi::DenseTensor out;
2368 2369 2370 2371 2372
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2373 2374
      SetTensorToVariable(*var, out, trans_var);
    }
2375 2376 2377 2378
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2379
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2380 2381 2382 2383 2384 2385 2386 2387
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2388
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2409
  }
L
Leo Chen 已提交
2410

2411 2412 2413 2414 2415 2416
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2417 2418 2419 2420 2421 2422

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2423 2424
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2425 2426 2427

  return new_scope;
}
Q
Qiao Longfei 已提交
2428

2429
void OperatorWithKernel::ParseInputDataType(
2430 2431
    const Variable* var,
    const std::string& name,
2432 2433
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2434 2435 2436
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2437 2438 2439 2440
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2452 2453 2454 2455 2456 2457 2458 2459 2460
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
2461 2462 2463 2464 2465 2466 2467
      PADDLE_ENFORCE_EQ(t->IsInitialized(),
                        true,
                        platform::errors::InvalidArgument(
                            "The %s Op's Input Variable `%s` "
                            "contains uninitialized phi::DenseTensor.",
                            Type(),
                            name));
2468 2469 2470 2471 2472 2473
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2474 2475
    const std::vector<Variable*>& vars,
    const std::string& name,
2476
    proto::VarType::Type* data_type) const {
2477
  proto::VarType::Type default_data_type =
2478 2479 2480 2481
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2482 2483 2484
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2485 2486
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2487 2488
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2512
      } else if (var->IsType<LoDTensorArray>()) {
2513 2514 2515 2516
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2517 2518
          }
        }
2519 2520
      }
      if (t != nullptr) {
2521 2522 2523 2524 2525 2526 2527
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2528 2529
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2530 2531 2532 2533 2534 2535 2536
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2537 2538 2539
                           Type(),
                           name,
                           DataTypeToString(tmp),
2540
                           DataTypeToString(*data_type)));
2541 2542 2543 2544 2545 2546
        *data_type = tmp;
      }
    }
  }
}

2547
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2548
    const ExecutionContext& ctx) const {
2549 2550 2551
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2552 2553 2554 2555 2556 2557
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2558
  }
2559
  PADDLE_ENFORCE_NE(
2560 2561
      data_type,
      dafault_data_type,
2562 2563
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2564 2565 2566 2567 2568 2569 2570 2571
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2572 2573 2574 2575 2576
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2577
  PADDLE_ENFORCE_NE(
2578 2579
      data_type,
      dafault_data_type,
2580 2581 2582 2583
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2584 2585
          name,
          Type()));
2586
  return data_type;
Y
Yu Yang 已提交
2587
}
2588

2589
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2602 2603 2604
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2605 2606
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2607 2608
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2609 2610 2611 2612
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2613 2614 2615 2616 2617 2618 2619
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2620
      platform::errors::InvalidArgument(
2621 2622 2623 2624 2625
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2637 2638
    const ExecutionContext& ctx,
    const std::string& name1,
2639 2640 2641 2642 2643 2644
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2645 2646
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2647 2648 2649 2650 2651 2652 2653

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2654 2655 2656 2657 2658 2659
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2660
    const std::string& var_name,
2661
    const phi::DenseTensor& tensor,
2662
    const OpKernelType& expected_kernel_type) const {
2663 2664
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2665 2666
}

2667
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2668
    const ExecutionContext& ctx) const {
2669
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2670
  if (arg_map_fn_ == nullptr) {
2671 2672 2673 2674
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2675 2676 2677
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2678 2679 2680 2681
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2682 2683
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2684 2685
}

2686
void OperatorWithKernel::BuildPhiKernelContext(
2687 2688
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2689 2690
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2691

2692 2693 2694
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2695

2696 2697 2698
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2699

2700 2701
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2702 2703 2704
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2705 2706
                        input_names.size(),
                        input_defs.size()));
2707

2708 2709
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2710 2711 2712
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2713 2714
                        output_names.size(),
                        output_defs.size()));
2715

2716 2717
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2718 2719 2720
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2721 2722
                        attr_names.size(),
                        attr_defs.size()));
2723 2724

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2725
    auto it = ctx.inputs.find(input_names[i]);
2726 2727 2728

    // calcute the start and end index of the input tensors
    size_t start_idx =
2729
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2730
    // deal with optional here
2731
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2732
        (input_defs[i].type_index ==
2733
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2734
         input_defs[i].type_index ==
2735
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2736
         input_defs[i].type_index ==
2737 2738
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2739
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2740
      auto end_idx = start_idx + 1;
2741 2742
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2743

H
hong 已提交
2744 2745 2746 2747
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2748
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2749
      const phi::TensorBase* tensor_in = nullptr;
2750
      auto* var = ins_vector[offset];
2751 2752
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
2753
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2754 2755
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2756
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2757 2758 2759
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2760
      } else if (var->IsType<framework::LoDTensorArray>()) {
2761
        need_prepare_phi_data_ = true;
2762 2763
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2764 2765 2766 2767
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2768
      }
2769
    }
2770
    // Note: here cannot deal with vector<LoDTensorArray> input
2771
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2772
  }
2773
  VLOG(4) << "Done inputs";
2774 2775

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2776
    auto it = ctx.outputs.find(output_names[i]);
2777
    size_t start_idx =
2778
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2779 2780 2781 2782 2783 2784

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2785
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2786
      auto end_idx = start_idx + 1;
2787 2788
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2789 2790 2791 2792
      continue;
    }
    auto& outs_vector = it->second;

2793
    size_t end_idx = start_idx + outs_vector.size();
2794 2795

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2796
      phi::TensorBase* tensor_out = nullptr;
2797
      auto* var = outs_vector[offset];
2798
      if (var) {
2799 2800
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
2801
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2802 2803
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2804
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2805 2806 2807
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2808
        } else if (var->template IsType<framework::LoDTensorArray>()) {
2809
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
2810 2811
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
2812
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2813 2814 2815 2816 2817
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2818
      } else {
2819
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2820
      }
2821
    }
2822 2823
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2824
  }
2825
  VLOG(4) << "Done outputs";
2826 2827

  for (size_t i = 0; i < attr_names.size(); ++i) {
2828 2829
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2830 2831
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2832 2833 2834 2835 2836 2837 2838
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2839
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2840
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2841
              break;
2842 2843 2844 2845
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
2846
            case proto::AttrType::INT:
2847
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2848
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2849
              break;
2850 2851 2852 2853
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
2854
            case proto::AttrType::STRING:
2855
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2856
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2857
              break;
2858 2859 2860 2861
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2862 2863 2864 2865 2866 2867 2868
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2869
          need_prepare_phi_data_ = true;
2870
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2871
          phi_kernel_context->EmplaceBackAttr(std::move(
2872
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2873
        }
2874 2875 2876 2877 2878
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2879
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2880
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2881 2882
              break;
            case proto::AttrType::LONGS:
2883
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2884
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2885 2886
              break;
            case proto::AttrType::INT:
2887
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2888
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2889 2890
              break;
            case proto::AttrType::LONG:
2891
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2892
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2893 2894 2895 2896 2897 2898 2899 2900
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2901
          need_prepare_phi_data_ = true;
2902 2903
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2904
            phi_kernel_context->EmplaceBackAttr(std::move(
2905 2906
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2907
            phi_kernel_context->EmplaceBackAttr(std::move(
2908 2909
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2910
        }
2911 2912 2913
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2914 2915
            attr_iter,
            Attrs().end(),
2916 2917 2918 2919 2920 2921
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2922
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2923 2924 2925 2926 2927
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2928
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2929 2930 2931
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2932
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2933 2934 2935 2936 2937
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2938
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2939 2940 2941
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2942
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2943 2944 2945 2946 2947
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2948
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2949 2950 2951
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2952
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2953 2954 2955 2956 2957
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2958
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2959 2960 2961
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2962
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2963 2964 2965 2966 2967
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2968
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2969 2970 2971 2972 2973
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2974 2975
                attr_names[i]));
        }
2976 2977
      } break;
      default: {
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
        if (attr_iter == Attrs().end()) {
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

2988 2989
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
2990
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2991
                PADDLE_GET_CONST(float, attr_iter->second));
2992
            break;
2993 2994 2995 2996
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
2997
          case phi::AttributeType::INT32:
2998
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2999
                PADDLE_GET_CONST(int, attr_iter->second));
3000 3001
            break;
          case phi::AttributeType::BOOL:
3002
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3003
                PADDLE_GET_CONST(bool, attr_iter->second));
3004 3005
            break;
          case phi::AttributeType::INT64:
3006
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3007
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3008 3009
            break;
          case phi::AttributeType::INT32S:
3010
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3011
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3012 3013 3014 3015
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3016
                    PADDLE_GET_CONST(int, attr_iter->second)));
3017
            phi_kernel_context->EmplaceBackAttr(data_type);
3018 3019
          } break;
          case phi::AttributeType::STRING:
3020
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3021
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3022 3023 3024 3025
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3026
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3027
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3028 3029 3030
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3031
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3032 3033
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3034
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3045
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3046
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3047 3048
            break;
          case phi::AttributeType::STRINGS:
3049
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3050
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3051 3052 3053 3054 3055 3056
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3057
        }
3058 3059 3060
      }
    }
  }
3061
  VLOG(4) << "Done attributes";
3062 3063
}

Q
Qiao Longfei 已提交
3064
}  // namespace framework
L
liaogang 已提交
3065
}  // namespace paddle