nn.py 541.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
28
from .. import dygraph_utils
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..data_feeder import convert_dtype, check_type_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
50 51
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
52
    'batch_norm',
L
lvmengsi 已提交
53
    'instance_norm',
H
heqiaozhi 已提交
54
    'data_norm',
X
Xin Pan 已提交
55 56 57 58 59 60 61
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
62 63
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
75
    'group_norm',
D
dengkaipeng 已提交
76
    'spectral_norm',
X
Xin Pan 已提交
77 78 79 80 81 82 83
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
84
    'lod_append',
X
Xin Pan 已提交
85 86 87 88 89
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
90
    'roi_align',
X
Xin Pan 已提交
91 92 93 94
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
95
    'resize_trilinear',
96
    'resize_nearest',
X
Xin Pan 已提交
97
    'gather',
98
    'gather_nd',
X
Xin Pan 已提交
99
    'scatter',
100 101
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
102 103 104
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
105
    'selu',
X
Xin Pan 已提交
106 107
    'log',
    'crop',
108
    'crop_tensor',
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
123
    'unique',
124
    'unique_with_counts',
X
Xin Pan 已提交
125
    'expand',
126
    'expand_as',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
135 136
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
137 138 139 140 141 142
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
143
    'strided_slice',
X
Xin Pan 已提交
144
    'shape',
Z
zhoukunsheng 已提交
145
    'rank',
Z
zhoukunsheng 已提交
146
    'size',
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
156
    'space_to_depth',
W
whs 已提交
157
    'affine_grid',
158
    'affine_channel',
B
barrierye 已提交
159
    'similarity_focus',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
164
    'bilinear_tensor_product',
C
chengduo 已提交
165 166
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
167
    'shuffle_channel',
168
    'temporal_shift',
S
sneaxiy 已提交
169
    'py_func',
170
    'psroi_pool',
171
    'prroi_pool',
R
ruri 已提交
172
    'pixel_shuffle',
173
    'fsp_matrix',
H
heqiaozhi 已提交
174
    'continuous_value_model',
Z
zhoukunsheng 已提交
175
    'where',
Z
zhoukunsheng 已提交
176
    'sign',
177
    'deformable_conv',
178
    'unfold',
C
cjt222 已提交
179
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
180
    'filter_by_instag',
181
    'shard_index',
H
huangjun12 已提交
182
    'hard_swish',
G
Guo Sheng 已提交
183
    'gather_tree',
184
    'uniform_random',
Y
Yu Yang 已提交
185 186 187
]


188 189 190 191 192 193 194 195 196 197 198
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    attrs = {'axis': axis, 'use_mkldnn': use_mkldnn}
    inputs = {'X': [x], 'Y': [y]}
    op = getattr(core.ops, op_name)
    outs = op(inputs, attrs)
199
    out = outs['Out'][0]
200

201 202
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
203 204


Y
Yu Yang 已提交
205 206 207 208 209 210
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
211
       name=None):
Y
Yu Yang 已提交
212
    """
213
    **Fully Connected Layer**
Y
Yu Yang 已提交
214

215 216 217
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
218
    which represents a fully connected weight matrix from each input unit to
219 220 221 222
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
223
    is not None, a bias variable will be created and added to the output.
224
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
225

226
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
227

228 229 230 231
    .. math::

        Out = Act({XW + b})

232
    When the input is a list of Tensor(or LoDTensor):
233 234 235

    .. math::

236
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
237 238 239

    In the above equation:

240 241 242
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
243
    * :math:`b`: The bias parameter created by this layer (if needed).
244
    * :math:`Act`: The activation function.
245
    * :math:`Out`: The output Tensor.
246 247 248

    .. code-block:: text

249 250 251 252 253 254 255 256 257 258 259 260 261 262
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
263 264 265 266 267 268 269 270 271 272 273 274 275
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
276
    Args:
277 278 279
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
280
        size(int): The number of output units in this layer, which also means the feature size of output
281 282
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
283
            two dimensions. If this happens, the multidimensional tensor will first be flattened
284 285
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
286
            dimensions will be flatten to form the first dimension of the final matrix (height of
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
302 303

    Raises:
304
        ValueError: If dimensions of the input Tensor is less than 2.
305 306 307 308

    Examples:
        .. code-block:: python

309
          import paddle.fluid as fluid
310
          # when input is single tensor
311
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
312
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
313 314

          # when input are multiple tensors
315 316
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
317
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
318
    """
C
caoying03 已提交
319
    helper = LayerHelper("fc", **locals())
320
    check_type(input, 'input', (list, tuple, Variable), 'fc')
321 322
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
323
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
324
    dtype = helper.input_dtype()
325
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
326
    mul_results = []
327 328
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
329 330 331
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
332

Y
Yu Yang 已提交
333
        w = helper.create_parameter(
334
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
335
        tmp = helper.create_variable_for_type_inference(dtype)
336
        helper.append_op(
337 338 339
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
340
            outputs={"Out": tmp},
M
mozga-intel 已提交
341 342
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
343 344 345 346
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
347
    else:
X
Xin Pan 已提交
348
        pre_bias = helper.create_variable_for_type_inference(dtype)
349
        helper.append_op(
350 351 352
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
353
            attrs={"use_mkldnn": False})
354 355 356 357
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
358 359


360 361 362
def embedding(input,
              size,
              is_sparse=False,
363
              is_distributed=False,
364 365 366
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
367
    """
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
421 422

    Args:
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
446
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
447 448 449
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
450

451
    Returns:
452
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
453

454 455
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
456

B
bdzhuxiaoning 已提交
457
          import paddle.fluid as fluid
458 459 460
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
461
          # example 1
462 463 464 465 466 467 468 469 470 471
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
472 473 474
    """

    helper = LayerHelper('embedding', **locals())
475 476 477 478
    check_type_and_dtype(input, 'input', Variable, ['int64'],
                         'fluid.layers.embedding')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
479
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
480 481
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
482 483
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
484
    tmp = helper.create_variable_for_type_inference(dtype)
485 486
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
487 488 489 490 491
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
492 493 494
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
495
            'remote_prefetch': remote_prefetch,
496 497
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
498 499 500
    return tmp


H
hutuxian 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
549
@templatedoc()
550
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
551 552 553 554 555 556
    """
    Linear Chain CRF.

    ${comment}

    Args:
557
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
558
        label(${label_type}): ${label_comment}
559
        Length(${length_type}): ${length_comment}
560
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
561 562

    Returns:
D
dzhwinter 已提交
563 564
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
565
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
566

J
JesseyXujin 已提交
567 568 569
    Examples:
        .. code-block:: python

570 571 572 573 574 575 576
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
577 578
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
601 602 603
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
604 605 606 607 608 609
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
610
                     name='crfw',
611 612 613 614 615 616
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
617

618 619 620
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
621
            ll=np.array([[3],[3],[4],[2]])
622 623 624
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
625 626 627 628 629
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

630 631 632
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
633
            
Y
yuyang18 已提交
634
    """
Y
Yu Yang 已提交
635
    helper = LayerHelper('linear_chain_crf', **locals())
636
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
637 638 639 640
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
641 642 643 644 645 646 647 648
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
649 650 651 652 653 654
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
655
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
656 657
    helper.append_op(
        type='linear_chain_crf',
658
        inputs=this_inputs,
Y
Yu Yang 已提交
659 660 661 662 663 664 665 666 667 668
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
669
@templatedoc()
670
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
671 672
    """
    ${comment}
Y
yi.wu 已提交
673

W
wopeizl 已提交
674 675
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
676

Y
Yibing Liu 已提交
677 678 679
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
680

Y
Yibing Liu 已提交
681
        label(${label_type}, optional): ${label_comment}
682
        
Y
Yibing Liu 已提交
683
        length(${length_type}, optional): ${length_comment}
684

W
wopeizl 已提交
685 686
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
687

W
wopeizl 已提交
688 689
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
690

691
           import paddle.fluid as fluid
692 693 694

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
695 696
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
697 698 699
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
700
                     param_attr=fluid.ParamAttr(name="crfw"))
701
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
702
                     param_attr=fluid.ParamAttr(name="crfw"))
703 704 705

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
706 707 708
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
709 710 711 712 713 714 715
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
716 717 718 719 720
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
721 722 723
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
724 725
    helper.append_op(
        type='crf_decoding',
726
        inputs=inputs,
W
wopeizl 已提交
727
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
728

W
wopeizl 已提交
729
    return viterbi_path
Y
Yu Yang 已提交
730 731


Y
yi.wu 已提交
732
@templatedoc()
F
fengjiayi 已提交
733
def cos_sim(X, Y):
Y
Yu Yang 已提交
734
    """
Y
yi.wu 已提交
735 736 737
    ${comment}

    Args:
738 739
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
740

Y
yi.wu 已提交
741
    Returns:
L
lvmengsi 已提交
742
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
743 744 745 746

    Examples:
        .. code-block:: python

747
            import paddle.fluid as fluid
L
lvmengsi 已提交
748 749
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
750
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
751
    """
F
fengjiayi 已提交
752
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
753 754 755
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
756 757 758 759 760 761 762 763 764 765
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
766 767 768 769 770
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
771
            dropout_implementation="downgrade_in_infer"):
772 773 774 775 776
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
777
    training. The dropout operator randomly sets (according to the given dropout
778 779 780
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
781 782
    dropout op can be removed from the program to make the program more efficient.

783
    Args:
L
lvmengsi 已提交
784
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
785
        dropout_prob (float): Probability of setting units to zero.
786 787 788 789
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
790
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
791 792
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
793 794
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
795
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
796 797

                                           - train: out = input * mask
C
ceci3 已提交
798
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
799 800 801

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
802
                                        2. upscale_in_train, upscale the outcome at training time
803

H
haowang101779990 已提交
804 805
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
806

H
haowang101779990 已提交
807 808
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
809

M
minqiyang 已提交
810

811
    Returns:
L
lvmengsi 已提交
812
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
813 814

    Examples:
815

816 817
        .. code-block:: python

818
            import paddle.fluid as fluid
L
lvmengsi 已提交
819
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
820
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
821 822
    """

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
        attrs = get_attrs(default_main_program(), dropout_prob, is_test, seed)
        attrs['is_test'] = not _dygraph_tracer()._train_mode
        inputs = {'X': [x]}
        outs = core.ops.dropout(inputs, attrs)
        return outs['Out'][0]

F
fengjiayi 已提交
842
    helper = LayerHelper('dropout', **locals())
843 844
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'dropout')
845

X
Xin Pan 已提交
846 847
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
848
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
849

850
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
851

852 853 854 855 856
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
857
        attrs=attrs)
858 859 860
    return out


Y
yi.wu 已提交
861
@templatedoc()
Y
Yu Yang 已提交
862 863 864 865
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
866 867
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
868
    """
G
Guo Sheng 已提交
869 870
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
871

M
minqiyang 已提交
872
    For some basics of chunking, please refer to
H
haowang101779990 已提交
873
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
874

G
Guo Sheng 已提交
875 876
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
877 878

    .. code-block:: python
879

Y
yi.wu 已提交
880 881 882 883 884 885 886 887 888 889
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
890
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
891

G
Guo Sheng 已提交
892 893 894
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
895 896 897 898 899 900 901 902 903 904

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
905

Y
yi.wu 已提交
906 907 908 909 910 911
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
912 913
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
914 915 916 917 918 919 920 921 922 923 924

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
925 926
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
927

Y
yi.wu 已提交
928
    Args:
G
Guo Sheng 已提交
929 930 931 932 933 934
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
935
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
936 937 938 939 940 941 942 943 944
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
945

Y
yi.wu 已提交
946
    Returns:
G
Guo Sheng 已提交
947 948 949 950
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
951

Y
yi.wu 已提交
952 953 954
    Examples:
        .. code-block:: python

955 956 957 958
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
959 960 961
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
962 963 964 965
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
966
            crf = fluid.layers.linear_chain_crf(
967
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
968
            crf_decode = fluid.layers.crf_decoding(
969
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
970 971 972 973 974
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
975
    """
F
fengjiayi 已提交
976
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
977 978

    # prepare output
X
Xin Pan 已提交
979 980 981 982 983 984 985
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
986

987 988 989 990 991
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
992 993
    helper.append_op(
        type="chunk_eval",
994
        inputs=this_input,
Y
Yu Yang 已提交
995 996 997
        outputs={
            "Precision": [precision],
            "Recall": [recall],
998 999 1000 1001
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1002 1003 1004
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1005 1006
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1007
        })
1008 1009
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1010 1011


1012
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1013
    """
1014
    This operator implements the softmax layer. The calculation process is as follows:
1015

1016
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1017
    
1018 1019 1020 1021 1022 1023 1024
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1025

1026 1027
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1028

1029 1030 1031 1032 1033
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1034

1035
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1036

1037
    .. math::
1038

1039
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1040

1041
    Example:
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1088
    Args:
1089 1090
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1091
            library is installed. To improve numerical stability, set use_cudnn to \
1092 1093
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1094
            will be named automatically. Default: None.
1095
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1096
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1097
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1098 1099

    Returns:
1100
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1101 1102 1103 1104 1105

    Examples:

        .. code-block:: python

1106 1107
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1118
    """
1119 1120 1121 1122 1123 1124 1125
    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}

    if in_dygraph_mode():
        outs = core.ops.softmax(inputs, attrs)
        return outs['Out'][0]

1126
    helper = LayerHelper('softmax', **locals())
1127 1128
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'softmax')
1129

1130
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1131
    softmax_out = helper.create_variable_for_type_inference(dtype)
1132 1133 1134 1135
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1136
        attrs=attrs)
1137 1138 1139
    return softmax_out


Y
Yu Yang 已提交
1140 1141 1142
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1143 1144
           stride=1,
           padding=0,
1145
           dilation=1,
Y
Yu Yang 已提交
1146 1147 1148
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1149
           use_cudnn=True,
1150
           act=None,
L
liym27 已提交
1151 1152
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1153
    """
C
chengduoZH 已提交
1154
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1155
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1156
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1157
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1158 1159 1160 1161 1162 1163
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1164
    for more details.
1165 1166 1167
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1168

1169
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1170

C
chengduoZH 已提交
1171 1172
    .. math::

C
refine  
chengduoZH 已提交
1173
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1174

T
tensor-tang 已提交
1175
    Where:
C
chengduoZH 已提交
1176

L
liym27 已提交
1177
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1178 1179 1180 1181
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1182
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1183 1184 1185

    Example:

1186 1187
        - Input:

W
weixing02 已提交
1188
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1189

W
weixing02 已提交
1190
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1191

1192
        - Output:
T
tensor-tang 已提交
1193

W
weixing02 已提交
1194
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1195

C
chengduoZH 已提交
1196
        Where
1197 1198

        .. math::
C
chengduoZH 已提交
1199

W
weixing02 已提交
1200 1201
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1202 1203

    Args:
L
lvmengsi 已提交
1204 1205
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1206
        num_filters(int): The number of filter. It is as same as the output
1207
            image channel.
1208 1209
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1210 1211 1212 1213 1214 1215
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1216
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1217 1218
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1219 1220 1221
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1222 1223 1224
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1225 1226 1227 1228
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1229 1230 1231 1232
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1233 1234 1235 1236 1237
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1238
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1239 1240 1241 1242 1243
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1244 1245
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1246 1247
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1248 1249 1250
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1251 1252
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1253 1254
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1255 1256

    Returns:
L
lvmengsi 已提交
1257 1258 1259 1260
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1275 1276 1277
    Examples:
        .. code-block:: python

1278
          import paddle.fluid as fluid
L
lvmengsi 已提交
1279
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1280
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1281 1282
    """

1283 1284
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'conv2d')
1285
    num_channels = input.shape[1]
L
liym27 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1301
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1302

1303
    l_type = 'conv2d'
X
xzl 已提交
1304 1305
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1306
        l_type = 'depthwise_conv2d'
1307 1308 1309 1310

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1311 1312 1313 1314
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1315
            raise ValueError(
1316 1317 1318
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1319
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1320

C
chengduoZH 已提交
1321 1322
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1323
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1324

L
liym27 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1348 1349 1350
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1365
            padding = [0, 0]
L
liym27 已提交
1366 1367
        elif padding == "SAME":
            padding_algorithm = "SAME"
1368
            padding = [0, 0]
L
liym27 已提交
1369 1370

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1371

M
minqiyang 已提交
1372
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1373 1374

    def _get_default_param_initializer():
C
chengduo 已提交
1375 1376
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1385
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1386 1387

    helper.append_op(
1388
        type=l_type,
Y
Yu Yang 已提交
1389 1390 1391 1392 1393
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1394 1395 1396
        attrs={
            'strides': stride,
            'paddings': padding,
1397
            'dilations': dilation,
C
chengduoZH 已提交
1398
            'groups': groups,
1399
            'use_cudnn': use_cudnn,
1400
            'use_mkldnn': False,
L
liym27 已提交
1401 1402 1403
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1404
        })
Y
Yu Yang 已提交
1405

1406 1407 1408 1409
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1410 1411 1412 1413

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1425 1426
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1427 1428 1429
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1430
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1431 1432 1433 1434 1435
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1445
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1446
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1447 1448 1449
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1450
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1472 1473
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1474
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1475
            image channel.
1476 1477 1478 1479
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1480 1481 1482 1483
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1484
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1485 1486 1487 1488 1489 1490 1491 1492
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1493 1494 1495 1496
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1497 1498 1499 1500 1501
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1512 1513
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1514 1515
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1516 1517 1518
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1519 1520 1521 1522
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1523 1524

    Returns:
L
lvmengsi 已提交
1525 1526 1527 1528
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1543 1544 1545
    Examples:
        .. code-block:: python

1546
          import paddle.fluid as fluid
L
lvmengsi 已提交
1547
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1548
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1549 1550 1551
    """

    l_type = 'conv3d'
C
chengduo 已提交
1552
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1553 1554 1555
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1571 1572 1573 1574 1575

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1576 1577 1578 1579
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1580
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1581 1582 1583 1584 1585

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1608 1609
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1610 1611
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1612 1613
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1628
            padding = [0, 0, 0]
L
liym27 已提交
1629 1630
        elif padding == "SAME":
            padding_algorithm = "SAME"
1631
            padding = [0, 0, 0]
L
liym27 已提交
1632 1633

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1634 1635 1636 1637 1638

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1639 1640 1641
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1642 1643 1644 1645 1646 1647 1648 1649
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1650
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1665 1666 1667
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1668 1669
        })

1670 1671 1672 1673
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1674 1675 1676 1677

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1678
@templatedoc()
Y
Yu Yang 已提交
1679
def pool2d(input,
C
chengduoZH 已提交
1680 1681
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1682 1683
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1684
           global_pooling=False,
C
chengduoZH 已提交
1685
           use_cudnn=True,
1686
           ceil_mode=False,
1687
           name=None,
1688 1689
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1690
    """
F
fengjiayi 已提交
1691
    ${comment}
1692 1693

    Args:
K
Kaipeng Deng 已提交
1694 1695 1696 1697 1698
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1699
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1700 1701
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1702
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1703 1704 1705
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1706 1707 1708 1709 1710 1711 1712
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1713
            Otherwise, the pool padding size will be a square of an int.
1714 1715 1716
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1717 1718 1719
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1720
        exclusive (bool): Whether to exclude padding points in average pooling
1721 1722 1723 1724
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1725

1726
    Returns:
K
Kaipeng Deng 已提交
1727
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1728 1729

    Raises:
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1742 1743 1744 1745 1746

    Examples:

        .. code-block:: python

1747
          import paddle.fluid as fluid
1748

K
Kaipeng Deng 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1792 1793 1794
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1795
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1796
            str(pool_type))
C
chengduoZH 已提交
1797

C
chengduoZH 已提交
1798 1799
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1800 1801 1802 1803
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1804 1805
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1806 1807 1808 1809 1810

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1811

C
chengduoZH 已提交
1812 1813 1814
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1837

1838 1839
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1854
            pool_padding = [0, 0]
1855 1856 1857 1858 1859 1860
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1861
            pool_padding = [0, 0]
1862 1863 1864 1865 1866

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1867
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1868
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1869 1870

    helper.append_op(
1871
        type=op_type,
1872 1873 1874 1875 1876 1877 1878 1879
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
1880
            "padding_algorithm": padding_algorithm,
1881 1882
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1883 1884
            "use_mkldnn": False,
            "exclusive": exclusive,
1885
            "data_format": data_format,
1886 1887 1888 1889 1890
        })

    return pool_out


D
dengkaipeng 已提交
1891
@templatedoc()
1892 1893 1894 1895 1896 1897 1898 1899
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
1900
           name=None,
1901 1902
           exclusive=True,
           data_format="NCDHW"):
1903
    """
1904
    ${comment}
1905 1906

    Args:
K
Kaipeng Deng 已提交
1907 1908
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1909 1910 1911
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1912
                          of the feature.
D
dengkaipeng 已提交
1913 1914 1915 1916 1917
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1929 1930 1931
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1932 1933 1934
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1935
        exclusive (bool): Whether to exclude padding points in average pooling
1936 1937 1938 1939
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1940

1941
    Returns:
K
Kaipeng Deng 已提交
1942
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1957 1958 1959 1960
    Examples:

        .. code-block:: python

1961
          import paddle.fluid as fluid
1962

K
Kaipeng Deng 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2011 2012 2013
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2014
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2015
            str(pool_type))
C
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2019 2020 2021 2022 2023
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2024 2025
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2026 2027 2028 2029 2030

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2031

2032 2033
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2057 2058
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2059 2060 2061

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2062 2063
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2078
            pool_padding = [0, 0, 0]
2079 2080 2081 2082 2083 2084
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2085
            pool_padding = [0, 0, 0]
2086 2087 2088 2089 2090

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2091
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2092
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2093 2094

    helper.append_op(
2095
        type=op_type,
Y
Yu Yang 已提交
2096 2097 2098 2099 2100 2101 2102
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2103
            "paddings": pool_padding,
2104
            "padding_algorithm": padding_algorithm,
2105
            "use_cudnn": use_cudnn,
2106
            "ceil_mode": ceil_mode,
2107 2108
            "use_mkldnn": False,
            "exclusive": exclusive,
2109
            "data_format": data_format,
Y
Yu Yang 已提交
2110 2111 2112 2113 2114
        })

    return pool_out


2115 2116 2117 2118 2119 2120 2121
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2122
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2123 2124 2125 2126
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2127
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2142 2143

    Args:
K
Kaipeng Deng 已提交
2144 2145 2146 2147 2148
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2149 2150 2151
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2152
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2153 2154 2155 2156
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2157 2158

    Returns:
K
Kaipeng Deng 已提交
2159 2160
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2161 2162 2163 2164 2165 2166 2167 2168 2169

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2170
          # average adaptive pool2d
M
minqiyang 已提交
2171
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2172
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2173
          # of input data into m * n grids averagely and performs poolings in each
2174 2175
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2176
          #
2177 2178 2179 2180 2181 2182 2183 2184
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2185
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2186
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2187
          pool_out = fluid.layers.adaptive_pool2d(
2188 2189
                            input=data,
                            pool_size=[3, 3],
2190
                            pool_type='avg')
K
Kaipeng Deng 已提交
2191 2192 2193

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2194
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2223
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2249
    return (pool_out, mask) if require_index else pool_out
2250 2251 2252 2253 2254 2255 2256 2257 2258


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2259
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2260 2261 2262 2263
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2264 2265
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2284 2285

    Args:
K
Kaipeng Deng 已提交
2286 2287 2288
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2289
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2290
                          The data type is float32 or float64.
2291
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2292
            it must contain three integers, (Depth, Height, Width).
2293
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2294
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2295 2296 2297 2298
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2299 2300

    Returns:
K
Kaipeng Deng 已提交
2301
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2302 2303 2304 2305 2306 2307 2308 2309 2310

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2311
          # average adaptive pool3d
2312
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2313
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2314
          # of input data into l * m * n grids averagely and performs poolings in each
2315 2316
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2317
          #
2318 2319 2320 2321 2322 2323 2324 2325 2326
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2327
          #                 output[:, :, i, j, k] =
2328 2329
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2330 2331 2332

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2333 2334
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2335
          pool_out = fluid.layers.adaptive_pool3d(
2336
                            input=data,
D
dengkaipeng 已提交
2337
                            pool_size=[3, 3, 3],
2338
                            pool_type='avg')
K
Kaipeng Deng 已提交
2339 2340 2341

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2342
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2378
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2404
    return (pool_out, mask) if require_index else pool_out
2405 2406


Y
Yu Yang 已提交
2407 2408 2409 2410 2411 2412 2413
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2414
               data_layout='NCHW',
Y
Yang Yang 已提交
2415
               in_place=False,
2416 2417
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2418
               moving_variance_name=None,
2419
               do_model_average_for_mean_and_var=True,
2420
               use_global_stats=False):
Y
Yu Yang 已提交
2421
    """
Q
qiaolongfei 已提交
2422 2423
    **Batch Normalization Layer**

L
lvmengsi 已提交
2424
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2425
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2426

Q
qiaolongfei 已提交
2427
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2428

Q
qiaolongfei 已提交
2429 2430
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2431 2432 2433
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2446

L
lvmengsi 已提交
2447 2448 2449
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2450

L
lvmengsi 已提交
2451
    moving_mean is global mean and moving_var is global variance.
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2465 2466 2467
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2468
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2469

2470
    Args:
2471
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2472
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2473
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2474 2475
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2476 2477 2478
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2479 2480 2481 2482 2483
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2484 2485
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2486 2487 2488
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2489 2490
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2491 2492 2493
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2494 2495 2496 2497
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2498
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2499 2500 2501
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2502 2503
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2504
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2505 2506
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2507 2508
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2509 2510 2511 2512 2513
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2514 2515

    Returns:
L
lvmengsi 已提交
2516 2517
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2518 2519 2520 2521 2522

    Examples:

        .. code-block:: python

2523
            import paddle.fluid as fluid
L
lvmengsi 已提交
2524
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2525 2526
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2554
    """
C
chengduo 已提交
2555
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2556 2557
    helper = LayerHelper('batch_norm', **locals())

2558 2559
    check_type_and_dtype(input, 'input', Variable,
                         ['float16', 'float32', 'float64'], 'batch_norm')
2560
    dtype = helper.input_dtype()
2561 2562 2563 2564 2565 2566 2567

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2568 2569 2570 2571
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2590
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2591

2592 2593
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2594 2595 2596
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2597
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2598
        shape=param_shape,
W
Wu Yi 已提交
2599
        dtype=dtype)
2600 2601 2602 2603 2604 2605
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2606
            trainable=False,
W
wanghaoshuang 已提交
2607
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2608
        shape=param_shape,
W
Wu Yi 已提交
2609
        dtype=dtype)
2610
    variance.stop_gradient = True
Y
Yu Yang 已提交
2611 2612 2613 2614 2615 2616

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2617 2618 2619 2620
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2621

2622 2623 2624 2625 2626
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

X
Xin Pan 已提交
2627 2628
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2660
    helper.append_op(
2661
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2662 2663 2664 2665

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2666 2667 2668 2669 2670 2671 2672 2673
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2674
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2688
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2689
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2690
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2691 2692 2693 2694
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2695 2696
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2697 2698

    Args:
L
lvmengsi 已提交
2699 2700
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2717 2718
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2719 2720 2721 2722 2723 2724

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2725
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2789
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2790 2791 2792
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2793 2794 2795
    """
    **Data Normalization Layer**

2796
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2820 2821 2822 2823
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2824 2825 2826 2827 2828
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2829 2830
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2831 2832 2833 2834 2835 2836 2837
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2838 2839 2840
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2841 2842 2843 2844 2845 2846 2847

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2848 2849
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2850

2851
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2852
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
2929 2930 2931 2932

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2933
@templatedoc()
G
guosheng 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
2944 2945 2946 2947
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2948 2949 2950

    The formula is as follows:

Y
yuyang18 已提交
2951
    ..  math::
G
guosheng 已提交
2952

2953
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2954

2955
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2956

2957
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2958

2959 2960 2961 2962 2963
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2964

G
guosheng 已提交
2965
    Args:
2966 2967 2968 2969 2970 2971
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2972
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2973 2974 2975 2976
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2977 2978
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2979
            a default :code:`ParamAttr` would be added as scale. The
2980 2981
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2982 2983
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2984
            a default :code:`ParamAttr` would be added as bias. The
2985
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2986
        act(str, optional): Activation to be applied to the output of layer normalization.
2987 2988
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2989 2990

    Returns:
2991
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2992 2993 2994

    Examples:

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3007
    """
L
lujun 已提交
3008
    assert in_dygraph_mode(
3009
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3010 3011 3012 3013 3014 3015 3016 3017
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3018
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3019 3020 3021 3022 3023 3024
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3025 3026
    else:
        if param_attr:
T
tianshuo78520a 已提交
3027
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3028
    if shift:
3029
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3030 3031 3032
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3033 3034
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3035
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3036 3037

    # create output
X
Xin Pan 已提交
3038 3039 3040 3041 3042
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3070
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3086
        act(str, optional): Activation to be applied to the output of group normalization.
3087 3088 3089 3090
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3091 3092
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3093 3094

    Returns:
3095 3096 3097 3098
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3099 3100 3101 3102 3103 3104
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3105 3106

    Examples:
3107
       .. code-block:: python
D
Dun 已提交
3108

3109 3110 3111
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3112 3113 3114 3115 3116 3117 3118
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3119 3120 3121 3122 3123 3124
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3138 3139
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3150 3151 3152 3153 3154
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3155 3156 3157 3158 3159

    return helper.append_activation(group_norm_out)


@templatedoc()
3160
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3161 3162 3163
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3164
    This operation calculates the spectral normalization value of weight parameters of
3165
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3166 3167
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3168

D
dengkaipeng 已提交
3169 3170 3171
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3172
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3173 3174

    Step 2:
T
tianshuo78520a 已提交
3175
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3176 3177
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3178 3179 3180 3181 3182 3183 3184 3185

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3186
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3187 3188 3189 3190

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3191

D
dengkaipeng 已提交
3192
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3193 3194
                

D
dengkaipeng 已提交
3195 3196 3197 3198
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3199 3200 3201
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3202 3203 3204
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3205 3206

    Returns:
D
dengkaipeng 已提交
3207
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3208
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3209 3210

    Examples:
K
Kaipeng Deng 已提交
3211
       .. code-block:: python
D
dengkaipeng 已提交
3212

K
Kaipeng Deng 已提交
3213 3214
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3215
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3216
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3217 3218
    """
    helper = LayerHelper('spectral_norm', **locals())
3219
    dtype = weight.dtype
D
dengkaipeng 已提交
3220 3221 3222

    # create intput and parameters
    inputs = {'Weight': weight}
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3241 3242

    # create output
3243
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3244 3245

    helper.append_op(
3246
        type="spectral_norm",
D
Dun 已提交
3247
        inputs=inputs,
3248 3249 3250 3251 3252 3253
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3254

3255
    return out
D
Dun 已提交
3256 3257


Y
Yu Yang 已提交
3258 3259 3260 3261
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3262 3263 3264
                     padding=0,
                     stride=1,
                     dilation=1,
3265
                     groups=None,
C
caoying03 已提交
3266
                     param_attr=None,
3267
                     bias_attr=None,
C
chengduoZH 已提交
3268
                     use_cudnn=True,
3269
                     act=None,
3270 3271
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3272
    """
3273 3274
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3275
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3276 3277 3278
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3279
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3280
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3281 3282 3283
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3284 3285 3286 3287 3288

    For each input :math:`X`, the equation is:

    .. math::

3289
        Out = \sigma (W \\ast X + b)
3290

3291
    Where:
3292

3293 3294
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3295
    * :math:`\\ast`: Convolution operation.
3296
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3297
    * :math:`\\sigma`: Activation function.
3298
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3299

3300 3301 3302 3303
    Example:

        - Input:

3304
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3305

3306
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3307 3308 3309

        - Output:

3310
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3311 3312

        Where
Y
Yu Yang 已提交
3313

3314 3315
        .. math::

3316 3317
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3318
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3319 3320
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3321
    Note:
L
lvmengsi 已提交
3322 3323 3324 3325
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3326 3327 3328 3329
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3330 3331

    Args:
3332 3333
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3334 3335
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3336
        output_size(int|tuple, optional): The output image size. If output size is a
3337
            tuple, it must contain two integers, (image_height, image_width). None if use
3338
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3339 3340 3341
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3342
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3343 3344
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3345 3346 3347 3348 3349 3350 3351
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3352 3353 3354 3355 3356 3357 3358 3359 3360
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3361 3362 3363 3364 3365 3366 3367
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3368
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3369 3370 3371 3372
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3373
            Default: groups = 1.
3374
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3375 3376 3377
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3378
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3379 3380 3381 3382
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3383
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3384
            library is installed. Default: True.
3385
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3386
            Default: None.
L
lvmengsi 已提交
3387 3388 3389
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3390 3391 3392 3393
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3394 3395

    Returns:
L
lvmengsi 已提交
3396 3397 3398 3399 3400 3401
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3402 3403

    Raises:
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3415 3416 3417 3418

    Examples:
       .. code-block:: python

3419
          import paddle.fluid as fluid
L
lvmengsi 已提交
3420
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3421
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3422
    """
C
chengduo 已提交
3423
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3424 3425 3426 3427
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3428

3429
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3430 3431 3432 3433 3434 3435
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3436 3437 3438
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3439 3440
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3441

C
chengduoZH 已提交
3442 3443
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3488 3489 3490 3491 3492
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3493

3494 3495
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3496

3497 3498 3499 3500
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3501
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3502 3503 3504
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3505

3506 3507 3508
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3509 3510 3511 3512 3513 3514
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3515
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3516
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3517

Y
Yu Yang 已提交
3518 3519 3520
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3521
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3522
    helper.append_op(
3523
        type=op_type,
Y
Yu Yang 已提交
3524 3525
        inputs={'Input': [input],
                'Filter': [img_filter]},
3526
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3527
        attrs={
3528
            'output_size': output_size,
3529 3530
            'strides': stride,
            'paddings': padding,
3531
            'padding_algorithm': padding_algorithm,
3532 3533
            'dilations': dilation,
            'groups': groups,
3534 3535
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3536 3537
        })

3538 3539 3540 3541
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3542 3543
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3544 3545


3546
def conv3d_transpose(input,
Y
Yu Yang 已提交
3547 3548 3549
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3550 3551 3552
                     padding=0,
                     stride=1,
                     dilation=1,
3553
                     groups=None,
C
caoying03 已提交
3554
                     param_attr=None,
3555
                     bias_attr=None,
C
chengduoZH 已提交
3556
                     use_cudnn=True,
3557
                     act=None,
3558 3559
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3560
    """
3561
    The convolution3D transpose layer calculates the output based on the input,
3562
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3563
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3564 3565 3566 3567
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3568
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3569 3570 3571
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3572 3573 3574 3575 3576

    For each input :math:`X`, the equation is:

    .. math::

3577
        Out = \sigma (W \\ast X + b)
3578 3579 3580

    In the above equation:

3581 3582
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3583
    * :math:`\\ast`: Convolution operation.
3584
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3585 3586
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3587

3588 3589 3590 3591
    Example:

        - Input:

3592
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3593

3594
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3595 3596 3597

        - Output:

3598
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3599 3600

        Where
Y
Yu Yang 已提交
3601

3602 3603
        .. math::

L
lvmengsi 已提交
3604 3605 3606 3607 3608 3609
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3610

L
lvmengsi 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3626 3627
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3628
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3629 3630 3631 3632
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3633
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3634
            it must contain three integers, (filter_size_depth, filter_size_height,
3635 3636
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3637 3638 3639 3640
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3641 3642 3643 3644 3645 3646 3647 3648
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3649 3650 3651 3652 3653 3654 3655 3656
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3657
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3658 3659 3660 3661 3662
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3663
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3664 3665 3666
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3667
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3668 3669 3670 3671
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3672
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3673
            library is installed. Default: True
3674
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3675
            Default: None.
L
lvmengsi 已提交
3676 3677 3678
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3679 3680 3681 3682
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3683 3684

    Returns:
L
lvmengsi 已提交
3685 3686 3687 3688 3689
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3690 3691

    Raises:
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3703 3704 3705 3706

    Examples:
       .. code-block:: python

3707
          import paddle.fluid as fluid
L
lvmengsi 已提交
3708
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3709
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3710
    """
C
chengduo 已提交
3711
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3712 3713 3714 3715
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3716 3717
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3718
    if not isinstance(input, Variable):
3719
        raise TypeError("Input of conv3d_transpose must be Variable")
3720 3721
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3722

3723 3724
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3725

C
chengduoZH 已提交
3726 3727 3728
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3743 3744 3745 3746 3747 3748 3749 3750
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3751

3752 3753
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3754

3755 3756 3757 3758 3759 3760 3761
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3776

3777
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3778

3779 3780 3781 3782 3783
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3784

3785 3786 3787
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3799

3800 3801
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3802

3803 3804 3805 3806
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3807

3808 3809 3810 3811
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3812

3813
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3814
    helper.append_op(
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3828

3829 3830 3831 3832 3833 3834
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3835 3836


C
caoying03 已提交
3837
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3838
    """
Y
yangyaming 已提交
3839
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3840 3841

    Args:
3842 3843 3844
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3845 3846
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3847 3848
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3849
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3850
            output Tensor. The result tensor will have one fewer dimension
3851 3852 3853 3854
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3855 3856

    Returns:
3857 3858
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3859

3860 3861 3862
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3863 3864 3865
    Examples:
        .. code-block:: python

3866
            import paddle.fluid as fluid
G
guosheng 已提交
3867 3868 3869
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3870
            # Each example is followed by the corresponding output tensor.
3871
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3872 3873 3874 3875
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3876

3877
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3878 3879
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3880
            # Each example is followed by the corresponding output tensor.
3881
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3882 3883
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3884

G
guosheng 已提交
3885
    """
3886 3887 3888
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
3889
        'dim': dim if dim != None and dim != [] else [0],
3890
        'keep_dim': keep_dim,
3891
        'reduce_all': True if dim == None or dim == [] else False
3892 3893 3894 3895 3896 3897 3898
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_sum(inputs, attrs)
        return outs['Out'][0]

3899 3900
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
3901
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3902
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3903 3904 3905 3906
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
3907
        attrs=attrs)
G
guosheng 已提交
3908
    return out
G
guosheng 已提交
3909 3910


C
caoying03 已提交
3911
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3912
    """
Y
Yibing Liu 已提交
3913
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3914 3915

    Args:
3916 3917 3918
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3919 3920
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3921
            must be in the range :math:`[-rank(input), rank(input))`. If
3922
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3923
            :math:`rank(input) + dim[i]`.
3924
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3925
            output Tensor. The result tensor will have one fewer dimension
3926 3927 3928 3929 3930
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
3931
    Returns:
3932 3933 3934 3935 3936 3937
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3938 3939 3940
    Examples:
        .. code-block:: python

3941
            import paddle.fluid as fluid
G
guosheng 已提交
3942 3943 3944
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
3945
            # Each example is followed by the corresponding output tensor.
3946
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3947 3948 3949
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3950
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3951

3952
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3953 3954
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
3955
            # Each example is followed by the corresponding output tensor.
3956
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3957 3958
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3959
    """
3960 3961 3962 3963

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    attrs = {
3964
        'dim': dim if dim != None and dim != [] else [0],
3965
        'keep_dim': keep_dim,
3966
        'reduce_all': True if dim == None or dim == [] else False
3967 3968 3969 3970 3971 3972 3973
    }

    if in_dygraph_mode():
        inputs = {'X': [input]}
        outs = core.ops.reduce_mean(inputs, attrs)
        return outs['Out'][0]

3974 3975 3976
    check_type_and_dtype(input, 'input', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'reduce_mean')
3977
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3978
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3979 3980 3981 3982
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
3983
        attrs=attrs)
G
guosheng 已提交
3984
    return out
3985 3986


C
caoying03 已提交
3987
def reduce_max(input, dim=None, keep_dim=False, name=None):
3988
    """
Y
yangyaming 已提交
3989
    Computes the maximum of tensor elements over the given dimension.
3990 3991

    Args:
3992 3993 3994
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3995 3996 3997
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3998
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
3999
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4000
            output Tensor. The result tensor will have one fewer dimension
4001 4002 4003 4004
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4005 4006

    Returns:
4007 4008
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4009

4010 4011 4012
    Examples:
        .. code-block:: python

4013
            import paddle.fluid as fluid
4014 4015 4016
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4017
            # Each example is followed by the corresponding output tensor.
4018
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4019 4020 4021 4022
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4023

4024
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4025 4026
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4027
            # Each example is followed by the corresponding output tensor.
4028
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4029 4030
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4031 4032
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4033
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4034 4035
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4036 4037 4038 4039 4040
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4041
            'dim': dim if dim != None and dim != [] else [0],
4042
            'keep_dim': keep_dim,
4043
            'reduce_all': True if dim == None or dim == [] else False
4044 4045 4046 4047
        })
    return out


C
caoying03 已提交
4048
def reduce_min(input, dim=None, keep_dim=False, name=None):
4049
    """
Y
yangyaming 已提交
4050
    Computes the minimum of tensor elements over the given dimension.
4051 4052

    Args:
4053 4054 4055
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4056 4057 4058
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4059
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4060
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4061
            output Tensor. The result tensor will have one fewer dimension
4062 4063 4064 4065
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4066 4067

    Returns:
4068 4069
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4070

4071 4072 4073
    Examples:
        .. code-block:: python

4074
            import paddle.fluid as fluid
4075 4076 4077
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4078
            # Each example is followed by the corresponding output tensor.
4079
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4080 4081 4082 4083
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4084

4085
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4086 4087
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4088
            # Each example is followed by the corresponding output tensor.
4089
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4090 4091
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4092 4093
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4094
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4095 4096
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4097 4098 4099 4100 4101
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4102
            'dim': dim if dim != None and dim != [] else [0],
4103
            'keep_dim': keep_dim,
4104
            'reduce_all': True if dim == None or dim == [] else False
4105 4106
        })
    return out
G
guosheng 已提交
4107 4108


4109 4110 4111 4112 4113
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4114 4115 4116
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4117
            :attr:`None`, multiply all elements of :attr:`input` and return a
4118
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4119 4120
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4121
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4122
            output Tensor. The result tensor will have one fewer dimension
4123 4124 4125 4126
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4127 4128

    Returns:
4129 4130 4131
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4132 4133 4134
    Examples:
        .. code-block:: python

4135
            import paddle.fluid as fluid
4136 4137 4138
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4139
            # Each example is followed by the corresponding output tensor.
4140
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4141 4142 4143
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4144
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4145
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4146

4147
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4148 4149
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4150
            # Each example is followed by the corresponding output tensor.
4151
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4152 4153
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4154 4155
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4156
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4157 4158
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4159 4160 4161 4162 4163
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4164
            'dim': dim if dim != None and dim != [] else [0],
4165
            'keep_dim': keep_dim,
4166
            'reduce_all': True if dim == None or dim == [] else False
4167 4168 4169 4170
        })
    return out


Z
zhoukunsheng 已提交
4171 4172
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4173
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4174 4175

    Args:
4176 4177
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4178 4179 4180
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4181
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4182 4183
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4184
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4185
        name(str|None): A name for this layer(optional). If set None, the layer
4186
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4187

4188 4189
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4190 4191 4192

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4193
        
4194
            import paddle.fluid as fluid
4195 4196 4197
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4198 4199 4200
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4201 4202 4203 4204 4205 4206
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4207 4208
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4209
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4210
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4222
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4223
            'keep_dim': keep_dim,
4224
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4225 4226 4227 4228 4229 4230
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4231
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4232 4233

    Args:
4234 4235 4236
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4237 4238
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4239
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4240 4241
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4242
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4243 4244
        name(str|None): A name for this layer(optional). If set None, the layer

4245 4246
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4247 4248 4249

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4250

4251
            import paddle.fluid as fluid
4252 4253 4254
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4255 4256 4257
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4258 4259 4260 4261 4262 4263
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4264 4265
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4266
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4267
                                     keep_dim=True)  # [[True], [False]]
4268
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4280
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4281
            'keep_dim': keep_dim,
4282
            'reduce_all': True if dim == None or dim == [] else False
4283 4284 4285 4286
        })
    return out


C
caoying03 已提交
4287
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4288
    """
4289
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4290 4291

    Args:
4292
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4293
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4294 4295
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4296 4297 4298 4299 4300
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4301
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4302 4303

    Returns:
4304
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4305

4306 4307 4308 4309
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4310
    Example:
G
guosheng 已提交
4311 4312
        .. code-block:: python

4313 4314
            import paddle.fluid as fluid

4315 4316
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4317 4318
                 name="input", shape=[3, 9, 5], dtype="float32")

4319 4320 4321 4322
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4323

4324 4325 4326 4327 4328 4329 4330 4331 4332
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4333
    """
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    if in_dygraph_mode():
        inputs = {'X': [input]}
        attrs = {}
        if isinstance(dim, int):
            dim = (len(input.shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim
        else:
            dim.stop_gradient = True
            inputs['AxisTensor'] = [dim]

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs['num'] = num_or_sections
            res = core.ops.split(inputs, attrs, {}, {'Out': num})
            return res['Out']
        elif isinstance(num_or_sections, list):
            num = len(num_or_sections)
            attrs['sections'] = list(
                map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                    num_or_sections))
            contain_var = not all(not isinstance(ele, Variable)
                                  for ele in num_or_sections)
            if contain_var:
                raise TypeError(
                    "The type of 'num_or_sections' in split must be int or list[int] in Dygraph mode, but "
                    "received %s." % ('list[Variable]'))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))

4365 4366 4367 4368 4369 4370 4371 4372 4373
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4374 4375
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4407 4408
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4409 4410 4411 4412 4413
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4414 4415
        num = num_or_sections
    else:
4416 4417 4418
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4419
        num = len(num_or_sections)
4420 4421 4422 4423 4424 4425 4426 4427 4428
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
        contain_var = not all(not isinstance(ele, Variable)
                              for ele in num_or_sections)
        if contain_var:
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4429
    outs = [
X
Xin Pan 已提交
4430
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4431 4432 4433
        for i in range(num)
    ]
    helper.append_op(
4434
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4435
    return outs
C
caoying03 已提交
4436 4437 4438 4439


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4440
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4441 4442
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4443
    .. math::
4444 4445

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4446 4447 4448 4449 4450

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4451
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4452
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4453 4454
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4455
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4456
            the default value is 1e-12.
R
ruri 已提交
4457 4458
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4459
    Returns:
R
ruri 已提交
4460
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4461 4462

    Examples:
4463

C
caoying03 已提交
4464
        .. code-block:: python
R
ruri 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4477

R
ruri 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4502 4503
    """

F
fengjiayi 已提交
4504 4505
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4506 4507
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4508 4509
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4510
    helper.append_op(
4511 4512 4513 4514
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4515
        attrs={
4516 4517
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4518 4519
        })
    return out
4520 4521


S
sneaxiy 已提交
4522
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4523
    """
Y
ying 已提交
4524 4525 4526 4527
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4528

C
chengduoZH 已提交
4529
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4530
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4531

4532 4533 4534 4535 4536
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4537
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4538

C
chengduoZH 已提交
4539
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4540
      performs in the following way.
G
guosheng 已提交
4541

4542
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4543
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4544
        last two dimensions and a batched matrix multiply supporting broadcast
4545
        applies on the two tensors.
G
guosheng 已提交
4546

Y
ying 已提交
4547 4548
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4549
    removed after matrix multiplication.
G
guosheng 已提交
4550 4551 4552

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4553 4554 4555
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4556
        alpha (float): The scale of output. Default 1.0.
4557
        name(str|None): A name for this layer(optional). If set None, the layer
4558
            will be named automatically.
G
guosheng 已提交
4559 4560

    Returns:
石晓伟 已提交
4561
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4562

G
guosheng 已提交
4563 4564 4565
    Examples:
        .. code-block:: python

4566
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4567
            # x: [B, ..., M, K], y: [B, ..., K, N]
4568
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4569

4570
            # x: [B, M, K], y: [B, K, N]
4571
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4572

4573
            # x: [B, M, K], y: [K, N]
4574
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4575

4576
            # x: [M, K], y: [K, N]
4577
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4578 4579

            # x: [B, M, K], y: [K]
4580
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4581

4582
            # x: [K], y: [K]
4583
            # fluid.layers.matmul(x, y)  # out: [1]
4584

Y
ying 已提交
4585
            # x: [M], y: [N]
4586 4587
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4588
            import paddle.fluid as fluid
4589 4590 4591
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4592
    """
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
        inputs = {'X': [x], 'Y': [y]}
        outs = core.ops.matmul(inputs, attrs)
        return outs['Out'][0]
Y
ying 已提交
4603 4604

    def __check_input(x, y):
4605 4606
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4607 4608
            check_type_and_dtype(val, name, Variable,
                                 ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4609 4610 4611 4612 4613
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4614
            y_shape = y_shape + [1]
Y
ying 已提交
4615 4616 4617 4618 4619 4620 4621

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4622 4623 4624 4625 4626
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4627

C
chengduo 已提交
4628
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4629
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4630 4631 4632
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4633
                if dim_x != y_shape[i]:
4634 4635 4636 4637 4638
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4639 4640 4641

    __check_input(x, y)

4642
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4643
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4644
    helper.append_op(
4645 4646 4647 4648
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
4649
        attrs=attrs)
4650
    return out
4651 4652


4653
def topk(input, k, name=None):
Q
qingqing01 已提交
4654
    """
4655
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4656 4657
    for the last dimension.

4658 4659
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4660 4661 4662 4663

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4664 4665
    .. code-block:: text

4666 4667 4668 4669 4670
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4671 4672 4673 4674
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4675
          Output:
F
fengjiayi 已提交
4676
            The first output:
4677 4678
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4679 4680 4681 4682
                      [10, 25],
                      [6, 10]]

            The second output:
4683 4684
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4685 4686 4687
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4688
    Args:
4689 4690 4691 4692
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4693 4694

    Returns:
4695 4696
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4697

F
fengjiayi 已提交
4698
    Raises:
4699
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4700 4701 4702 4703

    Examples:
        .. code-block:: python

4704
            import paddle.fluid as fluid
4705
            import paddle.fluid.layers as layers
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4719
    """
W
whs 已提交
4720
    inputs = {"X": [input]}
4721
    attrs = {}
W
whs 已提交
4722
    if isinstance(k, Variable):
4723
        inputs['K'] = [k]
W
whs 已提交
4724 4725
    else:
        attrs = {'k': k}
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

    if in_dygraph_mode():
        outs = core.ops.top_k(inputs, attrs)
        outs['Out'][0].stop_gradient = True
        outs['Indices'][0].stop_gradient = True
        return outs['Out'][0], outs['Indices'][0]

    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
4737 4738
    helper.append_op(
        type="top_k",
W
whs 已提交
4739
        inputs=inputs,
Q
qingqing01 已提交
4740 4741
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4742
        attrs=attrs)
Q
qingqing01 已提交
4743 4744 4745 4746 4747
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4748 4749 4750 4751 4752
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4753
    """
S
SunGaofeng 已提交
4754
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4755

S
SunGaofeng 已提交
4756
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4757 4758 4759
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4760

S
SunGaofeng 已提交
4761 4762 4763 4764
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4765 4766 4767 4768 4769
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4770
        (1) for lod mode:
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4782
        input.lod = [[4, 4]]
M
minqiyang 已提交
4783

W
whs 已提交
4784
        Computation:
4785

W
whs 已提交
4786 4787 4788 4789 4790 4791
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4792 4793 4794 4795 4796

        output.data = [[2],
                       [1],
                       [3]]

4797
        output.lod = [[2, 1]]
4798

S
SunGaofeng 已提交
4799
        (2) for padding mode:
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4826
    Parameters:
4827

S
SunGaofeng 已提交
4828 4829
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4830
                         where Lp is the sum of all input sequences' length and
4831 4832
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4833
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4834
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4835
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4836
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4837 4838
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4839
        padding_value(int): padding value.
S
SunGaofeng 已提交
4840 4841 4842
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4843 4844

    Returns:
S
SunGaofeng 已提交
4845 4846 4847 4848 4849
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
4850
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4862 4863 4864 4865

    Examples:
        .. code-block:: python

4866
            # for lod mode
S
SunGaofeng 已提交
4867
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4868
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4869
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4870 4871

            # for padding mode
S
SunGaofeng 已提交
4872 4873
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4874 4875 4876
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4877
    """
4878
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4879
    _, topk_indices = topk(input, k=1)
4880 4881

    # ctc align op
X
Xin Pan 已提交
4882
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
4908 4909


Y
fix ci.  
ying 已提交
4910
def transpose(x, perm, name=None):
Y
ying 已提交
4911
    """
4912
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
4913 4914 4915 4916 4917

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4918
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
4919
        perm (list): Permute the input according to the data of perm.
4920
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4921 4922

    Returns:
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
4947 4948

    Examples:
4949

Y
ying 已提交
4950 4951
        .. code-block:: python

4952
            # use append_batch_size=False to avoid prepending extra
4953
            # batch size in shape
4954
            import paddle.fluid as fluid
4955
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
4956
                            dtype='float32', append_batch_size=False)
4957
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
4958 4959
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
4960

4961
    """
4962 4963 4964 4965 4966 4967
    if in_dygraph_mode():
        attrs = {'axis': perm}
        inputs = {'X': [x]}
        outs = core.ops.transpose2(inputs, attrs)
        return outs['Out'][0]

4968 4969 4970 4971
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'transpose')
    check_type(perm, 'perm', list, 'transpose')
4972

Y
fix ci.  
ying 已提交
4973
    if len(perm) != len(x.shape):
Y
ying 已提交
4974
        raise ValueError(
4975 4976 4977 4978
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
4979 4980 4981
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
4982 4983 4984
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4985 4986

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4987 4988
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4989
    helper.append_op(
4990
        type='transpose2',
Y
fix ci.  
ying 已提交
4991
        inputs={'X': [x]},
4992 4993
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4994 4995
        attrs={'axis': perm})
    return out
4996 4997


4998 4999 5000 5001 5002 5003 5004
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5005
    """
5006
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5007 5008 5009
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5010 5011
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5012 5013 5014

    .. math::

L
Liufang Sang 已提交
5015 5016 5017 5018
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5019

L
Liufang Sang 已提交
5020
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5021

L
Liufang Sang 已提交
5022 5023
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5024

L
Liufang Sang 已提交
5025 5026 5027
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5028

L
Liufang Sang 已提交
5029 5030
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5031

L
Liufang Sang 已提交
5032 5033 5034 5035 5036 5037 5038
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5039

L
Liufang Sang 已提交
5040 5041 5042 5043
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5044
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5083 5084 5085
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5098
            output.dims = {8, 8}
5099

5100
            output.lod = [[4, 4]]
5101

T
Tink_Y 已提交
5102
    Examples:
5103 5104 5105

        .. code-block:: python

B
Bai Yifan 已提交
5106
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5107
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5108
                                     dtype='float32')
5109
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5110 5111
                input=data, stride=[1, 1], filter_size=[2, 2])

5112 5113

    """
L
lujun 已提交
5114
    assert not in_dygraph_mode(), (
5115
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5126
    inputs = {"X": input}
5127
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5128 5129 5130 5131 5132
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5133
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5134
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5135
    helper.append_op(
5136
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5137
    return out
5138 5139


Y
yuyang18 已提交
5140
@templatedoc()
5141
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5142 5143
    """
    ${comment}
5144 5145

    Args:
Y
yuyang18 已提交
5146
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5147 5148
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5149 5150 5151 5152 5153
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5154
        ${out_comment}.
5155 5156

    Examples:
D
Double_V 已提交
5157
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5158
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5159
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5160 5161
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5162 5163 5164
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5165 5166 5167 5168 5169 5170
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5171
    out = helper.create_variable_for_type_inference(dtype)
5172 5173 5174 5175 5176
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5177
    return helper.append_activation(out)
5178 5179


Y
yuyang18 已提交
5180
@templatedoc()
5181 5182
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5183

5184
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5185

5186
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5187

5188
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5189

5190
    For Example:
L
lujun 已提交
5191

5192
            .. code-block:: text
L
lujun 已提交
5193

5194
                Given:
L
lujun 已提交
5195

5196 5197 5198 5199
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5200

5201
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5202

5203 5204 5205 5206
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5207 5208


5209 5210 5211
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5212

5213
    Returns:
5214
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5215 5216

    Examples:
5217

X
xuezhong 已提交
5218 5219
        .. code-block:: python

5220
            import paddle.fluid as fluid
5221
            import numpy as np
5222

5223 5224 5225 5226
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5227

5228 5229 5230 5231 5232 5233 5234 5235 5236
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5237

5238 5239 5240 5241 5242 5243 5244 5245
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5246
    helper.append_op(
5247 5248 5249 5250 5251
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5252 5253


5254 5255
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5256 5257
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5258
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5259
    and then sums all the losses. So the shape of output Variable is
5260
    [batch_size, 1].
5261

5262 5263
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5264
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5265
            A LoDTensor or Tensor with type float32.
5266
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5267
            L1 loss op with same shape as :attr:`x`.
5268
            A LoDTensor or Tensor with type float32.
5269
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5270 5271
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5272
            by this tensor element by element.
5273
            A Tensor with type float32.
5274
        outside_weight (Variable|None): A tensor with rank at least 2. This
5275 5276
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5277
            element by element.
5278
            A Tensor with type float32.
5279
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5280 5281
           scalar with default value 1.0.

5282
    Returns:
5283
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5284 5285 5286 5287

    Examples:
        .. code-block:: python

5288
            import paddle.fluid as fluid
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5306
    """
5307

5308
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5309 5310
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5321
        attrs={'sigma': sigma if sigma is not None else 1.0})
5322
    return loss
5323 5324


5325
def one_hot(input, depth, allow_out_of_range=False):
5326
    """
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5381 5382

    Args:
5383 5384 5385 5386 5387
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5388
        allow_out_of_range(bool): A bool value indicating whether the input
5389 5390 5391 5392
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5393 5394

    Returns:
5395
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5396 5397

    Examples:
C
caoying03 已提交
5398
        .. code-block:: python
5399

5400
            import paddle.fluid as fluid
5401 5402 5403
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5404
    """
5405 5406 5407 5408 5409 5410
    if in_dygraph_mode():
        inputs = {'X': [input]}
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
        outs = core.ops.one_hot(inputs, attrs)
        outs['Out'][0].stop_gradient = True
        return outs['Out'][0]
5411

5412
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5413
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5414

5415 5416
    if not isinstance(depth, Variable):
        # user attribute
5417
        inputs = {'X': input}
Y
Yi Liu 已提交
5418
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5419
    else:
5420 5421 5422
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5423 5424
    helper.append_op(
        type="one_hot",
5425 5426
        inputs=inputs,
        attrs=attrs,
5427 5428
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5429
    return one_hot_out
Y
Yu Yang 已提交
5430 5431


Y
Yu Yang 已提交
5432
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5433
    """
Y
Yibing Liu 已提交
5434 5435 5436
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5437 5438

    Args:
Y
Yibing Liu 已提交
5439 5440 5441
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5442

5443
    Returns:
Y
Yibing Liu 已提交
5444
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5445 5446 5447 5448

    Examples:
        .. code-block:: python

5449
           import paddle.fluid as fluid
Y
yi.wu 已提交
5450
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5451
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5452 5453
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5454 5455
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5456
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5457 5458 5459 5460 5461
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5462 5463 5464
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5465
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5466
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5467 5468
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5469
            outputs={'Out': [counter]},
5470
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5471 5472 5473
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5474 5475


5476
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5477
    """
5478
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5479

5480 5481 5482 5483
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5484
    guarantee shape inference in compile-time.
C
caoying03 已提交
5485

5486
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5487

5488 5489 5490 5491
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5492
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5493
    corresponding dimension of x. The index of 0s in shape can not exceed
5494
    the dimension of x.
5495 5496

    Here are some examples to explain it.
C
caoying03 已提交
5497 5498

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5499
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5500
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5501

5502
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5503 5504
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5505 5506
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5507
    dimensions.
C
caoying03 已提交
5508

5509
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5510 5511 5512 5513
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5514

5515 5516
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5517

C
caoying03 已提交
5518
    Args:
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5536

5537
    Returns:
5538
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5539

X
Xin Pan 已提交
5540
    Raises:
5541 5542 5543 5544
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5545

C
caoying03 已提交
5546 5547
    Examples:
        .. code-block:: python
G
guosheng 已提交
5548

5549
            import paddle.fluid as fluid
5550 5551 5552

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5553 5554
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5555
            reshaped_1 = fluid.layers.reshape(
5556 5557
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5558 5559 5560 5561 5562 5563

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5564
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5565 5566 5567 5568 5569 5570

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5571
    """
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
    if in_dygraph_mode():
        #TODO(zhiqiu): open inplace if we can.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
            contain_var = not all(not isinstance(ele, Variable)
                                  for ele in shape)
            if contain_var:
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        inputs = {'X': [x]}
        outs = core.ops.reshape2(inputs, attrs)
5594 5595
        out = outs['Out'][0]
        return dygraph_utils._append_activation_in_dygraph(out, act)
5596

5597 5598 5599 5600 5601
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5602

5603
    helper = LayerHelper("reshape2", **locals())
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5634 5635
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5636 5637 5638
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5639 5640 5641 5642
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5643 5644
                else:
                    assert dim_size > 0, (
5645
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5646
                        "be negative except one unknown dimension. "
5647 5648
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5649 5650
        return attrs_shape

5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if contain_var(shape):
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5668
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5669
    helper.append_op(
5670
        type="reshape2",
X
Xin Pan 已提交
5671
        inputs=inputs,
5672
        attrs=attrs,
5673 5674
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5675

D
dzhwinter 已提交
5676
    return helper.append_activation(out)
5677

5678

5679
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5680
    """
5681 5682 5683
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5684

H
haowang101779990 已提交
5685

5686
    .. code-block:: text 
H
haowang101779990 已提交
5687

5688
        Case1:
H
haowang101779990 已提交
5689

5690
          Input:
H
haowang101779990 已提交
5691 5692
            X.shape = (1, 3, 1, 5)
            axes = [0]
5693
          Output:
H
haowang101779990 已提交
5694 5695
            Out.shape = (3, 1, 5)

5696
        Case2:
H
haowang101779990 已提交
5697

5698
          Input:
H
haowang101779990 已提交
5699 5700
            X.shape = (1, 3, 1, 5)
            axes = []
5701
          Output:
H
haowang101779990 已提交
5702
            Out.shape = (3, 5)
M
minqiyang 已提交
5703

5704 5705 5706 5707 5708 5709 5710 5711
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5712
    Args:
5713
        input (Variable): The input Tensor. Support data type: float16, float32, float64, int8, int32, int64.
5714 5715 5716 5717
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5718 5719

    Returns:
5720
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5721 5722 5723 5724

    Examples:
        .. code-block:: python

5725
            import paddle.fluid as fluid
5726
            import paddle.fluid.layers as layers
5727 5728 5729 5730
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5731 5732
    """
    helper = LayerHelper("squeeze", **locals())
5733 5734 5735
    check_type_and_dtype(
        input, 'input', Variable,
        ['float16', 'float32', 'float64', 'int8', 'int32', 'int64'], 'squeeze')
5736
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5737 5738
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5739
    helper.append_op(
5740
        type="squeeze2",
5741
        inputs={"X": input},
Y
Yibing Liu 已提交
5742
        attrs={"axes": axes},
5743 5744
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5745

5746 5747 5748
    return out


5749
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5750
    """
5751
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5752 5753
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5754

M
minqiyang 已提交
5755
    For example:
H
haowang101779990 已提交
5756 5757 5758

    .. code-block:: text

M
minqiyang 已提交
5759
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5760
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5761

Y
Yibing Liu 已提交
5762
    Args:
5763
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5764
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5765
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5766 5767

    Returns:
5768
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5769 5770 5771 5772

    Examples:
        .. code-block:: python

5773 5774 5775
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5776

Y
Yibing Liu 已提交
5777
    """
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        contain_var = not all(not isinstance(ele, Variable) for ele in axes)
        if contain_var:
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5811 5812
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5813
    helper.append_op(
5814
        type="unsqueeze2",
5815 5816
        inputs=inputs,
        attrs=attrs,
5817 5818
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5819

5820 5821
    return out

5822

Y
yangyaming 已提交
5823
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5824
    """
Y
Yibing Liu 已提交
5825
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5826 5827 5828 5829
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5830
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5831 5832 5833 5834 5835 5836

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5837
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5838 5839 5840
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5841
            target_lod: [4, 2]
Y
yangyaming 已提交
5842 5843

            then we get a 1-level LoDTensor:
5844
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5845 5846 5847 5848 5849 5850
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5851
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5852 5853 5854 5855
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5856
                y.data = [[2, 4]]
Y
yangyaming 已提交
5857 5858 5859
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5860
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5861 5862 5863 5864 5865 5866
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5867
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5868 5869 5870 5871
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5872
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5873 5874 5875 5876
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5877
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5878 5879 5880 5881
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
5882
        x (Variable): Input variable which could be a Tensor or LoDTensor.
5883
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5884
                           from :attr:`y`.
Y
yangyaming 已提交
5885
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5886
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5887 5888

    Returns:
Y
Yibing Liu 已提交
5889
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5890 5891

    Raises:
Y
Yibing Liu 已提交
5892
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5893 5894 5895 5896

    Examples:
        .. code-block:: python

5897
            import paddle.fluid as fluid
5898 5899 5900
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
5901 5902
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5903
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
5941
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
5942 5943 5944 5945 5946 5947

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
5959 5960 5961
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

5962 5963
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5964 5965 5966 5967 5968 5969 5970 5971

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
5972
    helper.append_op(
5973
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
5974
    return out
D
dragonwarrior 已提交
5975 5976


5977 5978
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
5979
    """
5980 5981 5982
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
5983 5984 5985 5986 5987

    The formula is as follows:

    .. math::

5988
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5989 5990 5991

    In the above equation:

5992 5993 5994 5995
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
5996 5997 5998


    Args:
5999 6000 6001
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6002 6003 6004 6005
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6006 6007
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6008 6009 6010 6011 6012
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6013
    Returns:
6014 6015
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6016 6017 6018

    Examples:

6019 6020 6021 6022 6023 6024 6025 6026
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6027 6028 6029 6030 6031 6032 6033 6034
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6035
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6036
            (dims))
6037 6038 6039 6040
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6041

X
Xin Pan 已提交
6042 6043 6044
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6045 6046 6047 6048 6049 6050 6051
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6052 6053 6054 6055 6056 6057 6058
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6059 6060

    return lrn_out
G
guosheng 已提交
6061 6062 6063 6064


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6065 6066
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6067

S
SunGaofeng 已提交
6068 6069 6070 6071
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6091
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6092
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6093 6094
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6095 6096
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6097 6098 6099
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6100 6101

    Returns:
S
SunGaofeng 已提交
6102 6103 6104 6105
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6106 6107 6108

    Examples:
        .. code-block:: python
G
guosheng 已提交
6109

S
SunGaofeng 已提交
6110 6111
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6112
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6113
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6114 6115 6116 6117 6118
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6119
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6120 6121 6122 6123 6124 6125 6126
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6127 6128


C
chengduo 已提交
6129 6130
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6131
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6132
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6133 6134
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6159 6160
		And
            pad_value = -1,
C
chengduo 已提交
6161

T
Tink_Y 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6176 6177

    Args:
T
tianshuo78520a 已提交
6178
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6179 6180
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6181
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6182 6183 6184
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6185 6186

    Returns:
S
SunGaofeng 已提交
6187 6188 6189 6190
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6191 6192 6193 6194 6195 6196

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6197
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6198 6199
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6200 6201 6202 6203 6204
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6205
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6206 6207 6208 6209 6210 6211 6212 6213 6214
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6215 6216 6217 6218 6219 6220
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6221 6222
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6223

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6241
    Parameters:
6242
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6258 6259 6260 6261 6262 6263

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6264
            
6265
            import paddle.fluid as fluid
6266
            import paddle.fluid.layers as layers
6267 6268 6269 6270 6271 6272 6273 6274

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6275 6276 6277 6278 6279 6280 6281 6282 6283

    if in_dygraph_mode():
        inputs = {"X": [label]}
        if prior_dist:
            inputs["PriorDist"] = [prior_dist]
        attrs = {"epsilon": float(epsilon)}
        outs = core.ops.label_smooth(inputs, attrs)
        return outs['Out'][0]

6284 6285
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6286
    smooth_label = helper.create_variable_for_type_inference(dtype)
6287 6288 6289 6290 6291 6292 6293
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6294 6295


W
wopeizl 已提交
6296 6297 6298
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6310
    Args:
6311 6312 6313 6314 6315 6316
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6317
    Returns:
6318 6319 6320
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6321
    Examples:
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6340 6341
                input=x,
                rois=rois,
6342 6343
                pooled_height=1,
                pooled_width=1,
6344
                spatial_scale=1.0)
6345 6346 6347 6348 6349
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6367 6368


J
jerrywgz 已提交
6369 6370 6371 6372 6373 6374
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6375 6376
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6377 6378 6379 6380 6381
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6382
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6394 6395

    Returns:
W
wangguanzhong 已提交
6396 6397 6398 6399 6400
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6401 6402 6403
    Examples:
        .. code-block:: python

6404
            import paddle.fluid as fluid
6405 6406 6407 6408
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6409 6410 6411
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6412 6413 6414 6415 6416 6417
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6418
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6433
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6434
    """
S
SunGaofeng 已提交
6435 6436 6437 6438
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6439 6440 6441 6442 6443 6444 6445 6446

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6447 6448 6449 6450 6451 6452
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6453 6454 6455
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6456 6457 6458
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6459 6460

    Returns:
S
SunGaofeng 已提交
6461 6462 6463
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6464

S
SunGaofeng 已提交
6465
    Example:
6466 6467
        .. code-block:: python

S
SunGaofeng 已提交
6468
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6469 6470 6471
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6472
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6473 6474
    """
    label = one_hot(label, depth=input.shape[-1])
6475
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6476 6477 6478 6479 6480 6481
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6482 6483


6484 6485 6486 6487
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6488
                 resample='BILINEAR',
6489 6490
                 actual_shape=None,
                 align_corners=True,
6491 6492
                 align_mode=1,
                 data_format='NCHW'):
6493
    """
R
ruri 已提交
6494
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6495

6496 6497 6498
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6499
    and the resizing only applies on the three dimensions(depth, height and width).
6500

6501
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6502 6503
    future and only use :attr:`out_shape` instead.

6504
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6505

6506
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6507

K
Kaipeng Deng 已提交
6508 6509
        'TRILINEAR' : Trilinear interpolation

6510
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6511

6512
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6513
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6514 6515 6516 6517 6518 6519 6520 6521
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6522 6523 6524 6525 6526
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6527
    Align_corners and align_mode are optional parameters,the calculation method 
6528 6529 6530 6531
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6532
    .. code-block:: text
6533

T
Tink_Y 已提交
6534
        For scale:
6535
          
T
Tink_Y 已提交
6536
            if align_corners = True && out_size > 1 :
6537

T
Tink_Y 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6549

T
Tink_Y 已提交
6550 6551
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6552

T
Tink_Y 已提交
6553 6554
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6555

T
Tink_Y 已提交
6556 6557
          else:
              align_corners = True
6558

T
Tink_Y 已提交
6559 6560
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6561

T
Tink_Y 已提交
6562 6563
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6564

T
Tink_Y 已提交
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6575

T
Tink_Y 已提交
6576 6577 6578 6579
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6580

T
Tink_Y 已提交
6581 6582
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6583

K
Kaipeng Deng 已提交
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6606 6607 6608 6609 6610 6611
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6612 6613 6614
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6615 6616


R
ruri 已提交
6617
    Parameters:
6618 6619
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6620
        out_shape(list|tuple|Variable|None): Output shape of image resize
6621 6622 6623 6624
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6625 6626 6627
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6628
             Default: None.
6629 6630
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6631 6632
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6633 6634 6635
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6636
                                :attr:`out_shape` and :attr:`scale` specifying
6637 6638
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6639 6640 6641 6642 6643
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6644
                                errors would be occurred in graph constructing stage.
6645
                                Default: None
6646 6647 6648 6649
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6650
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6651
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6652
                            src_idx = scale*dst_index.
6653 6654 6655 6656 6657
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6658 6659

    Returns:
6660 6661
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6662

6663 6664 6665
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6666 6667 6668 6669
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6670
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6671 6672
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6673
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6674
        TypeError: align_corners should be a bool value
6675
        ValueError: align_mode can only be '0' or '1'
6676
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6677

6678 6679
    Examples:
        .. code-block:: python
R
ruri 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6712

R
ruri 已提交
6713 6714 6715 6716 6717 6718
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6719

R
ruri 已提交
6720 6721 6722 6723 6724 6725 6726 6727
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6728

R
ruri 已提交
6729 6730
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6731

R
ruri 已提交
6732 6733 6734 6735
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6736

R
ruri 已提交
6737
		# [2L, 3L, 12L, 12L]
6738

6739
    """
6740 6741
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6742
        'TRILINEAR': 'trilinear',
6743 6744
        'NEAREST': 'nearest',
    }
6745 6746
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6747 6748
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6749
    resample_type = resample_methods[resample]
6750

K
Kaipeng Deng 已提交
6751 6752 6753 6754 6755
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6756 6757 6758 6759 6760
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6761
    if out_shape is None and scale is None:
6762
        raise ValueError("One of out_shape and scale must not be None.")
6763
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6764
    dtype = helper.input_dtype()
6765

6766 6767 6768 6769 6770 6771 6772 6773 6774
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6775 6776 6777
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6778 6779 6780 6781 6782
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6783
    inputs = {"X": input}
D
dengkaipeng 已提交
6784
    attrs = {
6785 6786 6787
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6788 6789
        "interp_method": resample_type,
        "align_corners": align_corners,
6790 6791
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6792 6793
    }

6794
    if out_shape is not None:
6795
        if isinstance(out_shape, Variable):
6796
            out_shape.stop_gradient = True
6797
            inputs['OutSize'] = out_shape
6798 6799
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6800 6801
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6830 6831 6832 6833
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6834 6835 6836 6837 6838 6839 6840
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6841 6842 6843 6844
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6845 6846 6847 6848 6849 6850 6851 6852 6853
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6854

6855
    else:
6856 6857 6858
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6859
        elif isinstance(scale, float) or isinstance(scale, int):
6860
            if scale <= 0:
6861
                raise ValueError("Attr(scale) should be greater than zero.")
6862
            attrs['scale'] = float(scale)
6863 6864 6865
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6866

6867
    if isinstance(actual_shape, Variable):
6868 6869 6870 6871 6872
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
6873 6874 6875 6876
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6877
    out = helper.create_variable_for_type_inference(dtype)
6878
    helper.append_op(
6879
        type='{}_interp'.format(resample_type),
6880
        inputs=inputs,
6881
        outputs={"Out": out},
D
dengkaipeng 已提交
6882
        attrs=attrs)
6883
    return out
F
stash  
fengjiayi 已提交
6884 6885


6886
@templatedoc(op_type="bilinear_interp")
6887 6888 6889 6890
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6891 6892
                    actual_shape=None,
                    align_corners=True,
6893 6894
                    align_mode=1,
                    data_format='NCHW'):
6895
    """
R
ruri 已提交
6896
    This op resizes the input by performing bilinear interpolation based on given
6897
    output shape which specified by actual_shape, out_shape and scale
6898 6899
    in priority order.

6900 6901 6902
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

6903 6904 6905 6906
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6907 6908
    again in the other direction.

6909
    For details of bilinear interpolation, please refer to Wikipedia:
6910
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6911

T
tianshuo78520a 已提交
6912
    Align_corners and align_mode are optional parameters,the calculation 
6913 6914 6915 6916
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6917
    .. code-block:: text
6918

T
Tink_Y 已提交
6919
        For scale:
6920
          
T
Tink_Y 已提交
6921
            if align_corners = True && out_size > 1 :
6922

T
Tink_Y 已提交
6923 6924 6925 6926
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
6927
              scale_factor = float(in_size/out_size)
6928

T
Tink_Y 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6939

T
Tink_Y 已提交
6940
          else:
T
tink2123 已提交
6941

T
Tink_Y 已提交
6942 6943 6944 6945
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6946

R
ruri 已提交
6947 6948
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
6949
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
6950
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
6951
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
6952 6953
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
6954
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
6955
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
6956
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
6957
             Default: None.
6958 6959 6960
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6961
                                :attr:`out_shape` and :attr:`scale` specifying
6962 6963
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6964 6965 6966 6967 6968
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6969
                                errors would be occurred in graph constructing stage.
6970
                                Default: None
6971 6972
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6973 6974 6975 6976
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
6977
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
6978 6979

    Returns:
R
ruri 已提交
6980 6981
	Variable: 4-D tensor(NCHW or NHWC).
    
6982 6983
    Examples:
        .. code-block:: python
R
ruri 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7016

R
ruri 已提交
7017 7018 7019 7020 7021 7022
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7023

R
ruri 已提交
7024 7025 7026 7027 7028 7029 7030 7031
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7032

R
ruri 已提交
7033 7034
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7035

R
ruri 已提交
7036 7037 7038 7039
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7040

R
ruri 已提交
7041
		# [2L, 3L, 12L, 12L]
7042

7043 7044
    """

7045
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7046
                        align_corners, align_mode, data_format)
7047 7048


K
Kaipeng Deng 已提交
7049 7050 7051 7052 7053 7054 7055
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7056 7057
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7058
    """
R
ruri 已提交
7059
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7060 7061 7062
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7063 7064 7065
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7066 7067 7068 7069 7070 7071 7072 7073
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7074
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7094

K
Kaipeng Deng 已提交
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7113
    Parameters:
7114 7115
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7116
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7117
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7118 7119 7120
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7121
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7122 7123 7124 7125 7126 7127
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7128 7129 7130 7131 7132
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7133
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7134 7135 7136
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7137 7138 7139 7140
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7141 7142

    Returns:
R
ruri 已提交
7143
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7144 7145 7146

    Examples:
        .. code-block:: python
R
ruri 已提交
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7179

R
ruri 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7198

R
ruri 已提交
7199 7200 7201 7202
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7203

R
ruri 已提交
7204
		# [2L, 3L, 12L, 12L, 12L]
7205 7206 7207



K
Kaipeng Deng 已提交
7208 7209 7210
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7211
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7212 7213


7214
@templatedoc(op_type="nearest_interp")
7215 7216 7217 7218
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7219
                   actual_shape=None,
7220 7221
                   align_corners=True,
                   data_format='NCHW'):
7222
    """
R
ruri 已提交
7223
    This op resizes the input by performing nearest neighbor interpolation in both the
7224 7225
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7226

7227 7228 7229
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7230 7231
    Example:

T
Tink_Y 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7244
          
T
Tink_Y 已提交
7245 7246
          if:
              align_corners = False
7247

T
Tink_Y 已提交
7248 7249
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7250

T
Tink_Y 已提交
7251 7252
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7253

T
Tink_Y 已提交
7254 7255
          else:
              align_corners = True
7256

T
Tink_Y 已提交
7257 7258
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7259

T
Tink_Y 已提交
7260 7261
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7262 7263


7264
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7265
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7266

R
ruri 已提交
7267
    Parameters:
7268 7269
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7270
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7271
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7272
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7273
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7274 7275 7276
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7277 7278
                                dynamically. If provided, image resize
                                according to this given shape rather than
7279
                                :attr:`out_shape` and :attr:`scale` specifying
7280 7281
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7282 7283 7284 7285 7286
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7287
                                errors would be occurred in graph constructing stage.
7288
                                Default: None
7289
        align_corners(bool): ${align_corners_comment}
7290 7291 7292 7293
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7294 7295

    Returns:
R
ruri 已提交
7296
	Variable: 4-D tensor(NCHW or NHWC).
7297 7298 7299

    Examples:
        .. code-block:: python
R
ruri 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7332

R
ruri 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7348

R
ruri 已提交
7349 7350
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7351

R
ruri 已提交
7352 7353 7354 7355 7356 7357
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7358 7359 7360



7361 7362
    """

7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7373 7374 7375 7376


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7377
    This op resizes a batch of images. The short edge of input images will be
7378 7379
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7380 7381
    constant.

R
ruri 已提交
7382 7383
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7384
        out_short_len(int): The length of output images' short edge.
7385
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7386

7387
    Returns:
R
ruri 已提交
7388
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7389 7390 7391 7392

    Examples:
        .. code-block:: python

7393
            import paddle.fluid as fluid
R
ruri 已提交
7394
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7395
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7406 7407 7408
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7409 7410 7411
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7412
def gather(input, index, overwrite=True):
W
whs 已提交
7413
    """
Q
qiaolongfei 已提交
7414 7415
    **Gather Layer**

7416
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7417 7418 7419 7420
    of X indexed by `index` and concatenate them together.

    .. math::

7421
        Out = X[Index]
W
whs 已提交
7422 7423 7424 7425 7426 7427 7428


    .. code-block:: text


                Given:

7429 7430
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7441 7442 7443 7444 7445
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7446 7447 7448 7449 7450
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7451 7452 7453 7454 7455

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7456

W
whs 已提交
7457 7458
        .. code-block:: python

7459
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7460 7461
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7462 7463 7464 7465
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7466
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7467 7468 7469 7470
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7471 7472
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7473 7474 7475
    return out


7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7528 7529 7530
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7531
        name (str|None): A name for this layer(optional). If set None, the
7532
                         layer will be named automatically.
7533 7534 7535 7536 7537 7538 7539 7540 7541

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7542 7543
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7562
def scatter(input, index, updates, name=None, overwrite=True):
7563 7564 7565
    """
    **Scatter Layer**

7566
    Output is obtained by updating the input on selected indices based on updates.
7567

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7592 7593

    Args:
7594 7595
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7596
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7597 7598
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7599 7600
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7601
	    Default value is True.
7602 7603

    Returns:
7604
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7605 7606 7607 7608 7609

    Examples:

        .. code-block:: python

7610
            import numpy as np
7611 7612
            import paddle.fluid as fluid

7613 7614 7615
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7616

7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7631 7632 7633
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7634
    out = helper.create_variable_for_type_inference(dtype)
7635 7636 7637 7638 7639
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7640
        attrs={'overwrite': overwrite},
7641 7642 7643 7644
        outputs={"Out": out})
    return out


7645 7646 7647 7648 7649
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7650 7651 7652
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7653 7654 7655 7656
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7657

7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
7689
        ref (Variable): The ref input. Its dtype should be float32, float64.
7690 7691
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7692 7693 7694
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7695 7696

    Returns:
7697
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7698 7699 7700 7701 7702 7703 7704

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7705 7706 7707
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7708 7709 7710 7711 7712 7713 7714

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7715
    dtype = helper.input_dtype(input_param_name='ref')
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
7746
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
7747 7748
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7749
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7760 7761
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7762 7763 7764 7765 7766 7767 7768
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7782

7783
    Examples:
Q
qingqing01 已提交
7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7797
    """
F
stash  
fengjiayi 已提交
7798
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7799
    dtype = x.dtype
X
Xin Pan 已提交
7800
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7801
    if seed is None:
7802
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7803
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7804
    if isinstance(seed, int):
F
fengjiayi 已提交
7805 7806 7807 7808 7809
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7810 7811 7812 7813
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7814
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7815 7816
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7817 7818
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7819
    return out
W
whs 已提交
7820 7821


7822
def log(x, name=None):
W
wanghaoshuang 已提交
7823 7824 7825 7826 7827
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7828
        Out = \\ln(x)
W
wanghaoshuang 已提交
7829 7830

    Args:
W
Wilber 已提交
7831 7832 7833
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7834 7835

    Returns:
W
Wilber 已提交
7836
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7837 7838 7839 7840 7841

    Examples:

        .. code-block:: python

7842
            import paddle.fluid as fluid
W
Wilber 已提交
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7856
    """
7857 7858 7859 7860 7861
    inputs = {'X': [x]}
    if in_dygraph_mode():
        outs = core.ops.log(inputs)
        return outs['Out'][0]

W
wanghaoshuang 已提交
7862
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7863
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7864
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7865
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7866 7867 7868
    return out


Z
zhupengyang 已提交
7869
@templatedoc()
7870
def relu(x, name=None):
W
wanghaoshuang 已提交
7871
    """
Z
zhupengyang 已提交
7872
    ${comment}
W
wanghaoshuang 已提交
7873 7874

    Args:
Z
zhupengyang 已提交
7875 7876 7877 7878
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
7879 7880

    Returns:
Z
zhupengyang 已提交
7881
        Variable: ${out_comment}
W
wanghaoshuang 已提交
7882 7883 7884 7885 7886

    Examples:

        .. code-block:: python

7887
            import paddle.fluid as fluid
Z
zhupengyang 已提交
7888 7889 7890 7891 7892 7893 7894 7895 7896
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
7897 7898 7899 7900 7901
    inputs = {'X': [x]}
    if in_dygraph_mode():
        outs = core.ops.relu(inputs)
        return outs['Out'][0]

W
wanghaoshuang 已提交
7902
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7903
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7904
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7905 7906
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7907
    return out
7908 7909


C
chengduo 已提交
7910 7911
def selu(x, scale=None, alpha=None, name=None):
    """
7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
7926 7927

    Args:
7928 7929
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
7930 7931 7932
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7933
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
7934 7935 7936
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7937 7938
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
7939 7940

    Returns:
7941
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
7942 7943 7944 7945

    Examples:

        .. code-block:: python
7946 7947
             
            import paddle.fluid as fluid
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7975 7976 7977
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7978 7979 7980 7981
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7982
    .. math::
7983

H
haowang101779990 已提交
7984
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7985

7986
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7987 7988 7989
    is then calculated from it.


L
Liufang Sang 已提交
7990 7991
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
7992
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7993
                           Its shape should be the same as input.
L
Liufang Sang 已提交
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8006 8007 8008
    Examples:

        .. code-block:: python
8009

B
Bai Yifan 已提交
8010
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8011
            iou_shape = [None, 32, 32]
8012
            num_classes = 5
L
Liufang Sang 已提交
8013 8014 8015
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8016
                                                          num_classes)
W
whs 已提交
8017 8018 8019
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8020 8021 8022
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8023 8024
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8025 8026
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8027
        outputs={
W
whs 已提交
8028 8029 8030
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8031 8032 8033
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8034 8035 8036 8037 8038 8039


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8040 8041
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8042

8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8071 8072 8073 8074 8075 8076
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8077
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8078
            iteration. If it is a list/tuple of integers, it's length must be the same
8079
            as the rank of `x`
S
SunGaofeng 已提交
8080 8081 8082
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8083
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8084 8085 8086 8087 8088
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8089 8090

    Returns:
S
SunGaofeng 已提交
8091 8092 8093 8094
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8095 8096 8097 8098 8099 8100 8101 8102

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8103
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8104 8105
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8106 8107 8108
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8109 8110
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8111 8112 8113 8114 8115

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8116
            isinstance(shape, Variable)):
8117 8118 8119 8120 8121
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8122
    out = helper.create_variable_for_type_inference(x.dtype)
8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8140 8141


8142 8143 8144 8145 8146 8147
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8148 8149
        * Case 1 (input is a 2-D Tensor):
            Input:
8150
                X.shape = [3, 5]
8151 8152 8153 8154 8155 8156 8157
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8158 8159 8160
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8171
                shape = [2, 2, -1]
8172 8173
                offsets = [0, 0, 1]
            Output:
8174 8175 8176 8177 8178
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8179 8180

    Parameters:
8181
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8182 8183
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8184
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8185
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8186 8187
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8188 8189
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8190
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8191 8192 8193 8194 8195
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8196 8197

    Returns:
8198
        Variable: The cropped Tensor has same data type with `x`.
8199 8200

    Raises:
8201 8202 8203 8204 8205 8206
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8207 8208 8209 8210 8211 8212

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8213
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8214 8215
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8216 8217
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8218 8219 8220 8221
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8222
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8223 8224
            # crop1.shape = [-1, 2, 3]

8225 8226 8227 8228 8229
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8230

8231 8232
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8233 8234 8235
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8236 8237
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8238 8239 8240 8241 8242
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8243 8244 8245 8246 8247 8248
    check_type_and_dtype(x, 'x', Variable,
                         ['float32', 'float64', 'int32', 'int64'],
                         'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8249 8250 8251 8252 8253 8254 8255 8256

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8257
    def _contain_var(input_list):
8258 8259 8260 8261 8262
        for ele in input_list:
            if isinstance(ele, Variable):
                return True
        return False

8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8287 8288 8289
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8290 8291
        attrs['offsets'] = [-1] * len(x.shape)
    elif _contain_var(offsets):
8292
        new_offsets_tensor = []
8293
        offsets_attr = []
8294 8295 8296 8297
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8298
                offsets_attr.append(-1)
8299
            else:
8300
                _attr_offsets_check(dim)
8301 8302 8303
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8304
                offsets_attr.append(dim)
8305
        ipts['OffsetsTensor'] = new_offsets_tensor
8306
        attrs['offsets'] = offsets_attr
8307
    else:
8308 8309
        for offset in offsets:
            _attr_offsets_check(offset)
8310 8311 8312 8313 8314
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
8315
    elif _contain_var(shape):
8316 8317
        new_shape_tensor = []
        shape_attr = []
8318
        for dim_size in shape:
8319 8320 8321
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8322
                shape_attr.append(0)
8323
            else:
8324
                _attr_shape_check(dim_size)
8325 8326 8327 8328 8329 8330 8331 8332
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8333 8334
        for dim_size in shape:
            _attr_shape_check(dim_size)
8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8345 8346 8347 8348 8349 8350 8351 8352
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8353 8354 8355 8356 8357 8358
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8359 8360

    Returns:
8361
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8362 8363 8364 8365 8366 8367 8368

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8369

S
SunGaofeng 已提交
8370
            import paddle.fluid as fluid
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8385 8386 8387 8388
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8389
            isinstance(out_shape, Variable)):
W
whs 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8411 8412 8413 8414 8415 8416 8417
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8418
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8419 8420 8421
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8440
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8441 8442 8443 8444 8445

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8446
        .. code-block:: text
W
whs 已提交
8447

T
Tink_Y 已提交
8448
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8449

T
Tink_Y 已提交
8450 8451
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8452

T
Tink_Y 已提交
8453
	      Case 0:
M
minqiyang 已提交
8454

T
Tink_Y 已提交
8455 8456 8457
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8458

T
Tink_Y 已提交
8459 8460 8461
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8462

T
Tink_Y 已提交
8463
	      Case 1:
M
minqiyang 已提交
8464

T
Tink_Y 已提交
8465 8466
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8467

T
Tink_Y 已提交
8468 8469 8470
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8471

T
Tink_Y 已提交
8472
	      Case 2:
M
minqiyang 已提交
8473

T
Tink_Y 已提交
8474 8475
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8476

T
Tink_Y 已提交
8477 8478 8479
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8480

L
Liufang Sang 已提交
8481
    Code Examples:
W
whs 已提交
8482 8483
        .. code-block:: python

B
Bai Yifan 已提交
8484
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8485
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8486 8487 8488
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8489
    """
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

    if in_dygraph_mode():
        outs = core.ops.pad2d(inputs, attrs)
        return outs['Out'][0]
W
whs 已提交
8501 8502

    helper = LayerHelper('pad2d', **locals())
8503 8504 8505 8506

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8507
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8508
    out = helper.create_variable_for_type_inference(dtype)
8509

W
whs 已提交
8510
    helper.append_op(
8511
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8512 8513 8514 8515

    return out


8516 8517 8518 8519 8520 8521 8522
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8523 8524
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8525
    Returns:
8526
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8527 8528 8529 8530 8531

    Examples:

        .. code-block:: python

8532
            import paddle.fluid as fluid
8533 8534 8535 8536 8537 8538 8539 8540 8541
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8542 8543
    """
    helper = LayerHelper('elu', **locals())
8544 8545
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'elu')
X
Xin Pan 已提交
8546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8559

8560 8561
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8562 8563 8564 8565
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8566 8567 8568

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8569 8570 8571 8572 8573

    Examples:

        .. code-block:: python

8574
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8575 8576 8577 8578 8579 8580 8581 8582
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8583 8584
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8585
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8597 8598 8599 8600
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8601
    Args:
8602 8603 8604
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8605 8606

    Returns:
8607
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8608 8609 8610 8611 8612

    Examples:

        .. code-block:: python

8613
            import paddle.fluid as fluid
8614

8615
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8616 8617 8618

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8619
            # y_1 is x^{2.0}
8620 8621 8622 8623

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8624
            # y_2 is x^{3.0}
8625 8626
    """
    helper = LayerHelper('pow', **locals())
8627 8628 8629 8630 8631 8632 8633 8634
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8635
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8636
    helper.append_op(
8637
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8638 8639 8640 8641
    return out


@templatedoc()
8642
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8653
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8654 8655 8656 8657 8658

    Examples:

        .. code-block:: python

8659
            import paddle.fluid as fluid
8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8675 8676
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8677
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8691 8692 8693 8694 8695 8696 8697
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8698 8699

    Returns:
8700
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8701 8702 8703 8704 8705

    Examples:

        .. code-block:: python

8706
            import paddle.fluid as fluid
8707 8708
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8709 8710
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8711
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8724 8725 8726 8727 8728 8729 8730
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8731
    Args:
8732 8733 8734 8735 8736
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8737 8738

    Returns:
8739 8740

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8741 8742 8743 8744

    Examples:

        .. code-block:: python
8745 8746 8747 8748 8749 8750
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8751
            y = fluid.layers.swish(x, beta=2.0)
8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8789 8790
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8792 8793 8794 8795 8796 8797 8798 8799
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8800 8801 8802 8803
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8804 8805
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8806

J
jerrywgz 已提交
8807 8808 8809 8810 8811 8812 8813 8814
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8815
    Args:
W
wangguanzhong 已提交
8816 8817
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8818
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8819 8820 8821 8822 8823
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8824 8825

    Returns:
W
wangguanzhong 已提交
8826 8827 8828 8829
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8830 8831 8832 8833 8834

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8835 8836
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8837
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8838
            mode = 'channel'
J
jerrywgz 已提交
8839 8840 8841
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8842 8843 8844 8845 8846 8847 8848 8849
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8850
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
8851 8852
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8853
        attr=helper.param_attr,
J
jerrywgz 已提交
8854 8855 8856
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8857
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8858
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8859 8860 8861 8862 8863 8864 8865 8866 8867
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8868 8869 8870 8871 8872 8873 8874 8875
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8876 8877
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8878
    Returns:
8879
        ${out_type}: ${out_comment}
8880 8881 8882

    Examples:

8883
    .. code-block:: python
8884

8885
            import paddle.fluid as fluid
8886 8887 8888 8889 8890 8891 8892 8893 8894
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
8895 8896
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8897
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
8914 8915
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

8916
    Returns:
8917
        output(${out_type}): ${out_comment}
8918 8919 8920 8921 8922

    Examples:

        .. code-block:: python

8923
            import paddle.fluid as fluid
W
Wilber 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
8937
    """
8938 8939 8940 8941 8942 8943
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
    if in_dygraph_mode():
        outs = core.ops.leaky_relu(inputs, attrs)
        return outs['Out'][0]

8944
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8945
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8946
    helper.append_op(
8947
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8948 8949 8950 8951 8952
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
8953 8954 8955 8956
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

8957
    Args:
8958 8959 8960 8961
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

8962
    Returns:
8963
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
8964 8965 8966

    Examples:

8967 8968 8969
        .. code-block:: python 
 
            import paddle.fluid as fluid
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
8982 8983
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8984
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8985 8986 8987 8988 8989 8990 8991 8992
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8993 8994
def flatten(x, axis=1, name=None):
    """
8995 8996 8997
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
8998

H
haowang101779990 已提交
8999
    For Example:
M
minqiyang 已提交
9000

H
haowang101779990 已提交
9001
    .. code-block:: text
9002

H
haowang101779990 已提交
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9024 9025

    Args:
9026 9027
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9028 9029
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9030
                    The value for axis must be in the range [0, R], where R
9031 9032 9033
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9034 9035

    Returns:
H
haowang101779990 已提交
9036 9037 9038
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9039
                  inner dimension of the output. A Tensor with type same as input x.
9040 9041 9042

    Raises:
        ValueError: If x is not a variable.
9043
        ValueError: If axis is not in range [0, rank(x)].
9044 9045 9046 9047 9048

    Examples:

        .. code-block:: python

9049
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9050
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9051
            # x shape is [4, 4, 3]
9052
            out = fluid.layers.flatten(x=x, axis=2)
9053
            # out shape is [16, 3]
9054 9055 9056 9057 9058 9059 9060 9061 9062
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9063 9064
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9065
    helper.append_op(
9066
        type='flatten2',
9067
        inputs={"X": x},
9068 9069
        outputs={'Out': out,
                 'XShape': x_shape},
9070 9071
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9072 9073 9074


def stack(x, axis=0):
S
sneaxiy 已提交
9075
    """
9076

9077
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9078

C
chengduozh 已提交
9079 9080 9081
    .. code-block:: text

        Case 1:
9082

C
chengduozh 已提交
9083
          Input:
9084
            x[0].shape = [1, 2]
C
chengduozh 已提交
9085
            x[0].data = [ [1.0 , 2.0 ] ]
9086
            x[1].shape = [1, 2]
C
chengduozh 已提交
9087
            x[1].data = [ [3.0 , 4.0 ] ]
9088
            x[2].shape = [1, 2]
C
chengduozh 已提交
9089 9090 9091 9092 9093 9094
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9095
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9096 9097 9098
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9099

C
chengduozh 已提交
9100 9101

        Case 2:
9102 9103 9104 9105


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9106
            x[0].data = [ [1.0 , 2.0 ] ]
9107
            x[1].shape = [1, 2]
C
chengduozh 已提交
9108
            x[1].data = [ [3.0 , 4.0 ] ]
9109
            x[2].shape = [1, 2]
C
chengduozh 已提交
9110
            x[2].data = [ [5.0 , 6.0 ] ]
9111

C
chengduozh 已提交
9112 9113 9114 9115 9116

          Attrs:
            axis = 1 or axis = -2

          Output:
9117
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9118 9119 9120
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9121

C
chengduozh 已提交
9122

S
sneaxiy 已提交
9123
    Args:
9124 9125 9126 9127 9128 9129 9130 9131 9132
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9133

S
sneaxiy 已提交
9134
    Returns:
9135
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9136

9137 9138 9139
    Examples:
        .. code-block:: python

9140
            import paddle.fluid as fluid
9141
            import paddle.fluid.layers as layers
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9152

S
sneaxiy 已提交
9153 9154
    """

X
Xin Pan 已提交
9155 9156 9157 9158 9159 9160
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9161
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9162
    helper.append_op(
S
sneaxiy 已提交
9163 9164
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9165

X
Xin Pan 已提交
9166
    return out
D
dzhwinter 已提交
9167 9168


J
Jiawei Wang 已提交
9169
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9170
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9207 9208
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9236 9237
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9238 9239 9240 9241

    return [out, loss_weight]


D
dzhwinter 已提交
9242 9243 9244 9245
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9246
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9247

D
dzhwinter 已提交
9248 9249 9250
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9251
    raised.
D
dzhwinter 已提交
9252 9253

    Args:
9254
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9255 9256
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9257

D
dzhwinter 已提交
9258
    Returns:
9259 9260 9261 9262
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9263

9264 9265 9266 9267
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9268 9269
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9270

9271
    """
D
dzhwinter 已提交
9272 9273 9274 9275 9276 9277 9278 9279
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9280
    for _ in range(num):
X
Xin Pan 已提交
9281
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9282 9283 9284 9285 9286 9287 9288 9289

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9290 9291 9292


def expand(x, expand_times, name=None):
9293 9294 9295 9296
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9297 9298 9299 9300 9301 9302
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9303

W
whs 已提交
9304 9305 9306 9307
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9308

W
whs 已提交
9309
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9310

W
whs 已提交
9311
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9312

W
whs 已提交
9313 9314 9315 9316
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9317

W
whs 已提交
9318
    Args:
9319 9320 9321 9322 9323
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9324 9325

    Returns:
9326
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9327

9328 9329 9330
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9331 9332 9333

    Examples:
        .. code-block:: python
L
liym27 已提交
9334

W
wangchaochaohu 已提交
9335
            import paddle.fluid as fluid
L
liym27 已提交
9336 9337 9338 9339

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9340
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9341 9342 9343 9344 9345

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9346
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9347
    """
9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373

    def contain_var(expand_times):
        for ele in expand_times:
            if isinstance(ele, Variable):
                return True
        return False

    inputs = {"X": [x]}
    attrs = {}

    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
            contain_var = contain_var(expand_times)
            if contain_var:
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['expand_times'] = expand_times
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        outs = core.ops.expand(inputs, attrs)
        return outs['Out'][0]

9374 9375 9376 9377
    check_type_and_dtype(x, 'x', Variable,
                         ['bool', 'float32', 'float64', 'int32', 'int64'],
                         'expand')
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9378 9379 9380
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9381

W
whs 已提交
9382
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9383 9384 9385 9386 9387 9388 9389 9390 9391

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9392
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9407 9408 9409 9410 9411

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:
L
liym27 已提交
9412 9413 9414 9415 9416 9417 9418 9419
        if isinstance(expand_times, Variable):
            expand_times.stop_gradient = True
            inputs['ExpandTimes'] = expand_times
        elif isinstance(expand_times, (list, tuple)):
            attrs['expand_times'] = get_attr_expand_times(expand_times)
            if contain_var(expand_times):
                inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                    expand_times)
9420

L
liym27 已提交
9421 9422
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9423
    helper.append_op(
9424
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9425
    return out
S
sneaxiy 已提交
9426 9427


9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9498 9499 9500
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9501
@templatedoc()
G
fix  
gongweibao 已提交
9502 9503 9504 9505 9506 9507 9508 9509 9510
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9511 9512 9513 9514 9515 9516
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9517

9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9544
    Args:
9545 9546 9547 9548 9549 9550 9551 9552
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9553
    Returns:
9554
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9555

9556 9557 9558
    Examples:
        .. code-block:: python

9559
            import paddle.fluid as fluid
9560 9561 9562 9563
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9564

9565 9566 9567 9568
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9569 9570 9571
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9572
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9589 9590


G
gongweibao 已提交
9591
@templatedoc()
X
Xin Pan 已提交
9592
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9593
    """
9594
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9595 9596

    Args:
9597 9598 9599 9600 9601 9602 9603 9604 9605
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9606 9607

    Returns:
9608
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9609

9610
    Examples:
9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9626

9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9645 9646 9647
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9648
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9649 9650 9651 9652 9653 9654 9655 9656 9657 9658
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9659
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9660 9661 9662 9663 9664
        })

    return out


G
gongweibao 已提交
9665
@templatedoc()
G
fix  
gongweibao 已提交
9666
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9667
    """
R
ruri 已提交
9668
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9669

R
ruri 已提交
9670 9671 9672 9673 9674
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9675
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9676 9677

    Returns:
R
ruri 已提交
9678
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9679

9680 9681 9682
    Examples:
        .. code-block:: python

9683
            import paddle.fluid as fluid
R
ruri 已提交
9684
            x = fluid.data(
9685 9686
                name="X",
                shape=[13, 11],
R
ruri 已提交
9687
                dtype='float32')
9688

Y
Yibing Liu 已提交
9689
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9690 9691 9692
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9693
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9705
@templatedoc()
G
fix  
gongweibao 已提交
9706 9707 9708 9709 9710 9711 9712 9713 9714
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9715
    ${comment}
G
fix  
gongweibao 已提交
9716 9717

    Args:
G
gongweibao 已提交
9718 9719
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9720 9721 9722 9723 9724 9725
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9726 9727

    Returns:
G
gongweibao 已提交
9728
        out (Variable): ${out_comment}
9729 9730 9731 9732

    Examples:
        .. code-block:: python

9733
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9734
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9735

Y
Yibing Liu 已提交
9736
            out = fluid.layers.gaussian_random_batch_size_like(
9737
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9738 9739 9740
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9741
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9760
@templatedoc()
X
Xin Pan 已提交
9761
def sum(x):
G
fix  
gongweibao 已提交
9762
    """
G
gongweibao 已提交
9763
    ${comment}
9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9794 9795

    Args:
9796
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9797 9798

    Returns:
9799
        Variable: ${out_comment}
9800 9801 9802 9803

    Examples:
        .. code-block:: python

9804
            import paddle.fluid as fluid
9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9827 9828 9829
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9830 9831
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9832 9833 9834 9835
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9836
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9837 9838 9839 9840

    return out


G
gongweibao 已提交
9841
@templatedoc()
G
fix  
gongweibao 已提交
9842 9843
def slice(input, axes, starts, ends):
    """
9844
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9845
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9846 9847 9848 9849 9850 9851 9852
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9853
    For slicing to the end of a dimension with unknown size, it is recommended
9854
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9855 9856 9857
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9858

9859 9860 9861 9862 9863 9864 9865 9866
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9867

9868 9869 9870 9871 9872
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9873
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9874
            Then:
9875
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9876
    Args:
9877 9878 9879 9880 9881 9882 9883 9884 9885
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
9886 9887

    Returns:
9888 9889 9890 9891 9892
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
9893

9894 9895 9896
    Examples:
        .. code-block:: python

9897
            import paddle.fluid as fluid
9898

9899 9900
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
9901

9902 9903 9904 9905 9906 9907
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
9908
            # sliced_1 is input[0:3, 0:2, 2:4].
9909 9910 9911 9912 9913

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
9914
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
9915 9916
    """

9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        inputs = {'Input': [input]}

        if isinstance(starts, (list, tuple)):
            if contain_var(starts):
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
            if contain_var(ends):
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'infer_flags': infer_flags
        }
        outs = core.ops.slice(inputs, attrs)
        return outs['Out'][0]

9956 9957 9958 9959 9960 9961 9962
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
9963
    helper = LayerHelper('slice', **locals())
9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if not contain_var(starts):
            attrs['starts'] = starts
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if not contain_var(ends):
            attrs['ends'] = ends
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10019 10020
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10021
    helper.append_op(
10022
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10023 10024 10025 10026

    return out


W
wangchaochaohu 已提交
10027 10028 10029
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10043 10044 10045 10046 10047 10048 10049 10050 10051

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10052
                strides = [1, 1]
W
wangchaochaohu 已提交
10053
            Then:
10054
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10055 10056 10057 10058 10059
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10060
                starts = [0, 1]
W
wangchaochaohu 已提交
10061 10062 10063 10064 10065 10066 10067 10068 10069
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10070
                starts = [0, 1]
10071 10072
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10073
            Then:
10074 10075
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10088 10089

    Returns:
W
wangchaochaohu 已提交
10090 10091 10092 10093 10094 10095
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10096

W
wangchaochaohu 已提交
10097 10098 10099 10100 10101
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10102
            input = fluid.data(
W
wangchaochaohu 已提交
10103 10104
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10105 10106 10107 10108 10109
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10110 10111 10112 10113 10114
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10115 10116 10117 10118

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10119 10120
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10121
    """
10122 10123 10124 10125 10126 10127 10128 10129 10130 10131
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10132 10133
    helper = LayerHelper('strided_slice', **locals())

10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10160 10161 10162
            'axes': axes,
            'starts': starts,
            'ends': ends,
10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if not contain_var(starts):
                attrs['starts'] = starts
            else:
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if not contain_var(ends):
                attrs['ends'] = ends
            else:
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if not contain_var(strides):
                attrs['strides'] = strides
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10221 10222 10223 10224

    return out


G
fix  
gongweibao 已提交
10225 10226
def shape(input):
    """
C
chengduozh 已提交
10227 10228
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10229
    Get the shape of the input.
G
fix  
gongweibao 已提交
10230 10231

    Args:
10232
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10233 10234

    Returns:
10235
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10236

10237 10238 10239
    Examples:
        .. code-block:: python

10240
            import paddle.fluid as fluid
10241
            import numpy as np
10242

10243 10244 10245 10246 10247 10248 10249 10250 10251 10252
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10253 10254 10255
    """

    helper = LayerHelper('shape', **locals())
10256
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10257
    helper.append_op(
G
fix  
gongweibao 已提交
10258
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10259 10260

    return out
G
merge  
gongweibao 已提交
10261 10262


Z
zhoukunsheng 已提交
10263 10264
def rank(input):
    """
10265
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10266 10267

    Args:
10268
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10269 10270

    Returns:
10271
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10272 10273 10274 10275

    Examples:
        .. code-block:: python

10276 10277
            import paddle.fluid as fluid

10278 10279
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10280 10281 10282 10283 10284 10285 10286 10287
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10317 10318 10319 10320
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10321

S
sneaxiy 已提交
10322 10323
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10324 10325 10326 10327 10328 10329
    check_type_and_dtype(x, 'x', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
    check_type_and_dtype(y, 'y', Variable,
                         ['float16', 'float32', 'float64', 'int32', 'int64'],
                         op_type)
10330

S
sneaxiy 已提交
10331 10332
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10333 10334
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10335
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10336 10337 10338
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10339

S
sneaxiy 已提交
10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10350
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10351
    """
10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10365 10366

    Args:
10367
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10368
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10369 10370 10371 10372
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10373 10374

    Returns:
10375
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10376 10377 10378 10379 10380

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10381 10382 10383 10384 10385 10386 10387 10388 10389
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10390

10391 10392
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10393 10394 10395 10396 10397 10398 10399 10400

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10401
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10414
    """
10415
    inputs = {'X': [x]}
10416 10417 10418 10419 10420
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10421
        inputs['ScaleTensor'] = [scale]
10422 10423 10424
    else:
        attrs['scale'] = float(scale)

10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435
    if in_dygraph_mode():
        outs = core.ops.scale(inputs, attrs)
        return dygraph_utils._append_activation_in_dygraph(outs['Out'][0])

    helper = LayerHelper('scale', **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

S
sneaxiy 已提交
10436
    helper.append_op(
10437
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10438
    return helper.append_activation(out)
S
sneaxiy 已提交
10439 10440


X
Xin Pan 已提交
10441
def elementwise_add(x, y, axis=-1, act=None, name=None):
10442 10443 10444 10445 10446 10447 10448 10449 10450 10451
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10452 10453
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10454 10455
            }

10456 10457
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478
        z = fluid.layers.elementwise_add(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3., 8., 6.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10479 10480
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502
        z = fluid.layers.elementwise_add(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10503 10504
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
        z = fluid.layers.elementwise_add(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10515 10516 10517 10518
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10519 10520 10521
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10522
def elementwise_div(x, y, axis=-1, act=None, name=None):
10523 10524 10525 10526 10527 10528 10529 10530 10531 10532
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10533 10534
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10535 10536
            }

10537 10538
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559
        z = fluid.layers.elementwise_div(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 0.6, 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10560 10561
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583
        z = fluid.layers.elementwise_div(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10584 10585
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10586 10587 10588 10589 10590 10591 10592 10593 10594 10595
        z = fluid.layers.elementwise_div(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10596 10597 10598 10599
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10600 10601 10602
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10603
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10604 10605 10606 10607 10608 10609 10610 10611 10612 10613
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10614 10615
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10616 10617
            }

10618 10619
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640
        z = fluid.layers.elementwise_sub(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1., -2., 2.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10641 10642
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664
        z = fluid.layers.elementwise_sub(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10665 10666
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10667 10668 10669 10670 10671 10672 10673 10674 10675 10676
        z = fluid.layers.elementwise_sub(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10677 10678 10679 10680
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10681 10682 10683
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10684
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10685 10686 10687 10688 10689 10690 10691 10692 10693 10694
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10695 10696
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10697 10698
            }

10699 10700
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721
        z = fluid.layers.elementwise_mul(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2., 15., 8.]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10722 10723
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745
        z = fluid.layers.elementwise_mul(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10746 10747
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10748 10749 10750 10751 10752 10753 10754 10755 10756 10757
        z = fluid.layers.elementwise_mul(x, y, axis=3)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
10758 10759 10760 10761
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
10762 10763 10764
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10765
def elementwise_max(x, y, axis=-1, act=None, name=None):
10766 10767 10768 10769 10770 10771 10772 10773 10774 10775
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10776 10777
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10778 10779
            }

10780 10781
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10803 10804
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
10816 10817 10818 10819
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
10820 10821 10822
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10823
def elementwise_min(x, y, axis=-1, act=None, name=None):
10824 10825 10826 10827 10828 10829 10830 10831 10832 10833
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10834 10835
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10836 10837
            }

10838 10839
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10860 10861
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10862 10863 10864 10865 10866 10867 10868 10869 10870 10871
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
10872 10873 10874
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
10875

S
sneaxiy 已提交
10876 10877 10878
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10879
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10880 10881 10882 10883 10884 10885 10886 10887 10888 10889
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10890 10891
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10892 10893
            }

10894 10895
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10896 10897 10898 10899 10900 10901 10902 10903 10904
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
10905 10906 10907
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
10908 10909 10910
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10911
def elementwise_mod(x, y, axis=-1, act=None, name=None):
10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
10937 10938 10939 10940
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

10941 10942 10943 10944
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
10970 10971 10972 10973
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

10974 10975 10976
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10977
for func in [
10978 10979 10980 10981
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
10982 10983
        elementwise_max,
        elementwise_pow,
10984
        elementwise_min,
10985 10986
        elementwise_mod,
        elementwise_floordiv,
10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11004
for func in []:
S
sneaxiy 已提交
11005 11006 11007 11008
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11009 11010
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11011
        ])
11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11049 11050


11051
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11052 11053
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11054 11055
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11056 11057 11058

    if out is None:
        if name is None:
X
Xin Pan 已提交
11059
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11075
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11076
    """
W
Wilber 已提交
11077 11078 11079 11080 11081 11082 11083 11084
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11085 11086 11087 11088

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11089 11090
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11091 11092

    Returns:
W
Wilber 已提交
11093
        ${out_type}: ${out_comment}
11094 11095 11096 11097

    Examples:
        .. code-block:: python

11098
            import paddle.fluid as fluid
W
Wilber 已提交
11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11117 11118 11119 11120 11121 11122 11123
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11124
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11125
    """
W
Wilber 已提交
11126 11127 11128 11129 11130 11131 11132 11133
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11134 11135 11136 11137

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11138 11139
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11140 11141

    Returns:
W
Wilber 已提交
11142
        ${out_type}: ${out_comment}
11143 11144 11145 11146

    Examples:
        .. code-block:: python

11147
            import paddle.fluid as fluid
W
Wilber 已提交
11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11166 11167 11168 11169 11170 11171 11172
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11173
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11174
    """
W
Wilber 已提交
11175 11176 11177 11178 11179 11180 11181 11182
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11183 11184 11185 11186

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11187 11188
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11189 11190

    Returns:
W
Wilber 已提交
11191
        ${out_type}: ${out_comment}
11192 11193 11194 11195

    Examples:
        .. code-block:: python

11196
            import paddle.fluid as fluid
W
Wilber 已提交
11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11215 11216 11217 11218 11219 11220 11221
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11222
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11223
    """
W
Wilber 已提交
11224 11225 11226 11227 11228 11229 11230 11231
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11232 11233 11234

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11235 11236
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11237 11238

    Returns:
W
Wilber 已提交
11239
        ${out_type}: ${out_comment}
11240 11241 11242 11243

    Examples:
        .. code-block:: python

11244
            import paddle.fluid as fluid
W
Wilber 已提交
11245 11246 11247 11248 11249
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11250
            # The comment lists another avaliable method.
W
Wilber 已提交
11251 11252 11253 11254 11255 11256 11257 11258 11259 11260
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11261 11262 11263 11264
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11265 11266 11267 11268 11269 11270 11271 11272 11273


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11274 11275 11276 11277 11278
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11279 11280

    Returns:
S
SunGaofeng 已提交
11281 11282 11283 11284
        ${out_comment}

    Return Type:
        ${out_type}
11285 11286 11287 11288

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11289
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11290
            input = fluid.data(
11291 11292
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11293 11294 11295 11296 11297
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11298 11299
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11300 11301 11302

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11322 11323 11324
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11325 11326

    Returns:
W
wangguanzhong 已提交
11327 11328
        Variable:

11329
        out(${out_type}): ${out_comment}
11330

W
wangguanzhong 已提交
11331

11332 11333 11334
    Examples:
        .. code-block:: python

11335
            import paddle.fluid as fluid
11336 11337
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11338
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11339 11340 11341 11342 11343
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11344 11345
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11346 11347 11348

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11349 11350 11351 11352 11353 11354 11355 11356

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11370 11371 11372 11373

    Examples:
        .. code-block:: python

11374
            import paddle.fluid as fluid
11375 11376 11377
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11378
    """
11379 11380 11381 11382
    if in_dygraph_mode():
        inputs = {"X": [x]}
        outs = core.ops.mean(inputs)
        return outs['Out'][0]
X
Xin Pan 已提交
11383 11384

    helper = LayerHelper("mean", **locals())
11385 11386
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mean')
X
Xin Pan 已提交
11387
    if name is None:
X
Xin Pan 已提交
11388
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11389 11390 11391 11392 11393 11394 11395 11396 11397 11398
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11410 11411 11412 11413

    Examples:
        .. code-block:: python

11414
            import paddle.fluid as fluid
11415 11416 11417 11418 11419
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11432 11433
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11434 11435 11436 11437 11438 11439 11440 11441
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11442 11443

    Args:
L
liu zhengxi 已提交
11444 11445 11446 11447 11448
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11449 11450

    Returns:
L
liu zhengxi 已提交
11451
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11452 11453

    Examples:
L
liu zhengxi 已提交
11454
        ..  code-block:: python
11455 11456 11457 11458 11459 11460 11461 11462 11463
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11464
    """
11465 11466 11467 11468 11469
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
    if in_dygraph_mode():
        outs = core.ops.mul(inputs, attrs)
        return outs['Out'][0]
X
Xin Pan 已提交
11470 11471

    helper = LayerHelper("mul", **locals())
11472 11473 11474 11475
    check_type_and_dtype(x, 'x', Variable, ['float16', 'float32', 'float64'],
                         'mul')
    check_type_and_dtype(y, 'y', Variable, ['float16', 'float32', 'float64'],
                         'mul')
X
Xin Pan 已提交
11476
    if name is None:
X
Xin Pan 已提交
11477
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11478 11479 11480 11481 11482
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
11483 11484
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11485 11486 11487 11488
    return out


@templatedoc()
11489
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11490 11491 11492 11493 11494
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11495 11496
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11497 11498 11499
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11500 11501

    Returns:
11502
        Variable: ${out_comment}
J
jerrywgz 已提交
11503

11504 11505
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11506
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11507

J
jerrywgz 已提交
11508 11509 11510
    Examples:
        .. code-block:: python

11511
            import paddle.fluid as fluid
11512
            input = fluid.data(
J
jerrywgz 已提交
11513
                name='data', 
11514
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11515 11516
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11517 11518
    """
    helper = LayerHelper("maxout", **locals())
11519 11520 11521 11522 11523 11524
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11525 11526

    if name is None:
X
Xin Pan 已提交
11527
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11528 11529 11530 11531 11532 11533 11534
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11535 11536
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11537 11538
        outputs={"Out": out})
    return out
11539 11540


J
JiabinYang 已提交
11541
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11542
    """
J
JiabinYang 已提交
11543
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11544

11545 11546 11547
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11548
    The attr blocksize indicates the input block size.
11549

T
tianshuo78520a 已提交
11550
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11551 11552
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11553

J
JiabinYang 已提交
11554 11555 11556 11557 11558
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11576

J
JiabinYang 已提交
11577
    Args:
11578 11579 11580 11581 11582 11583
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11584

11585 11586 11587 11588
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11589 11590

    Raises:
11591
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11592 11593 11594

    Examples:
        .. code-block:: python
11595
    
11596 11597
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11598

11599 11600
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11601
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11602
                x=data, blocksize=2)
11603

11604
            exe = fluid.Executor(fluid.CPUPlace())
11605
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11606 11607 11608 11609 11610 11611 11612

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11613
            out_main = exe.run(fluid.default_main_program(),
11614 11615 11616 11617 11618 11619 11620 11621
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11622

J
JiabinYang 已提交
11623 11624
    """

J
JiabinYang 已提交
11625
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11626

J
JiabinYang 已提交
11627 11628
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11629 11630

    if name is None:
J
JiabinYang 已提交
11631 11632
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11633 11634 11635 11636 11637
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11638
        type="space_to_depth",
J
JiabinYang 已提交
11639
        inputs={"X": x},
J
JiabinYang 已提交
11640
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11641
        outputs={"Out": out})
J
JiabinYang 已提交
11642 11643
    return out

J
JiabinYang 已提交
11644

11645 11646 11647 11648 11649 11650
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11651 11652 11653 11654 11655
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11656

11657 11658 11659
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11660
            is applied in the second dimension.The data type is float32 or float64.
11661 11662
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11663
            the input.The data type is float32 or float64.
11664 11665
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11666
            The data type is float32 or float64.
11667 11668 11669 11670 11671
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11672 11673
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11674
        act (str, default None): Activation to be applied to the output of this layer.
11675 11676

    Returns:
L
LielinJiang 已提交
11677
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11678 11679 11680

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11681 11682

            import numpy as np
B
Bai Yifan 已提交
11683
            import paddle.fluid as fluid
L
LielinJiang 已提交
11684 11685 11686 11687 11688 11689 11690 11691 11692 11693

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11694
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11695 11696 11697 11698 11699 11700 11701 11702 11703 11704
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11705

11706 11707 11708 11709
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11710
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11722
    return helper.append_activation(out)
11723 11724


B
barrierye 已提交
11725
def similarity_focus(input, axis, indexes, name=None):
11726
    """
B
barrierye 已提交
11727
    SimilarityFocus Operator
B
barrierye 已提交
11728 11729

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11730

11731 11732 11733
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11734
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11735 11736 11737 11738 11739 11740 11741
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11742
       each index.
B
barrierye 已提交
11743 11744 11745 11746
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11796
    Args:
11797
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11798 11799
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11800
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11801
            1, 2 or 3.
B
barrierye 已提交
11802
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11803 11804

    Returns:
H
haowang101779990 已提交
11805 11806
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11807

B
barrierye 已提交
11808 11809
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11810

11811
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11812
            data = fluid.data(
Y
Yibing Liu 已提交
11813 11814
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11827 11828 11829 11830 11831
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11832 11833 11834 11835 11836 11837 11838
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11839 11840


M
minqiyang 已提交
11841 11842
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11843
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11844 11845
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11846 11847

    Args:
Z
zhupengyang 已提交
11848 11849 11850 11851 11852 11853
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11854 11855

    Returns:
Z
zhupengyang 已提交
11856
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11857 11858

    Examples:
Z
zhupengyang 已提交
11859
        .. code-block:: python
H
haowang101779990 已提交
11860

11861
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11862
            import numpy as np
11863

Z
zhupengyang 已提交
11864
            place = fluid.core.CPUPlace()
11865

Z
zhupengyang 已提交
11866 11867
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11868

Z
zhupengyang 已提交
11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11886 11887
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11888 11889
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11890 11891 11892 11893 11894 11895 11896
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11897 11898


D
dengkaipeng 已提交
11899
@templatedoc()
11900 11901
def grid_sampler(x, grid, name=None):
    """
11902
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
11903
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
11904 11905
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
11906 11907
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
11908 11909
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
11910

H
haowang101779990 已提交
11911
    .. code-block:: text
11912

H
haowang101779990 已提交
11913 11914
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11915

K
Kaipeng Deng 已提交
11916 11917 11918 11919
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11920

H
haowang101779990 已提交
11921 11922 11923
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11924

H
haowang101779990 已提交
11925 11926 11927 11928 11929 11930 11931 11932 11933
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11934

H
haowang101779990 已提交
11935 11936 11937 11938
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11939

H
haowang101779990 已提交
11940 11941 11942 11943
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11944

H
haowang101779990 已提交
11945 11946 11947 11948
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11949

H
haowang101779990 已提交
11950 11951
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11952 11953

    Args:
K
Kaipeng Deng 已提交
11954 11955 11956 11957 11958 11959 11960 11961 11962
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
11963 11964

    Returns:
H
haowang101779990 已提交
11965
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
11966 11967
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
11968

H
haowang101779990 已提交
11969 11970 11971 11972
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11973 11974
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
11975 11976
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
11977 11978
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11979
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11980

D
dengkaipeng 已提交
11981 11982 11983 11984 11985 11986 11987 11988 11989
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11990
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11991 11992
    ipts = {'X': x, 'Grid': grid}

11993
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11994 11995 11996
    return out


G
gmcather 已提交
11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12010
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12011
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12012 12013 12014 12015 12016 12017 12018
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12019 12020 12021 12022 12023 12024 12025

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12026
          import paddle.fluid as fluid
12027 12028
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12050 12051
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12052

G
Guo Sheng 已提交
12053 12054
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12055

G
Guo Sheng 已提交
12056
    The formula is as follows:
G
gmcather 已提交
12057 12058

    .. math::
H
haowang101779990 已提交
12059 12060 12061
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12062 12063

    Where:
G
Guo Sheng 已提交
12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12081 12082

    Returns:
G
Guo Sheng 已提交
12083
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12084 12085 12086 12087

    Examples:
        .. code-block:: python

12088 12089
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12090
          tensor = fluid.data(
12091
              name='tensor',
G
Guo Sheng 已提交
12092 12093
              shape=[None, 64, 512],
              dtype='float32')
12094 12095
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12096

G
gmcather 已提交
12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12113 12114 12115 12116 12117 12118 12119 12120 12121 12122


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12123
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12124

Q
Qiao Longfei 已提交
12125
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12126 12127 12128
    For example:

    .. math::
H
haowang101779990 已提交
12129
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12130

Q
Qiao Longfei 已提交
12131
    In this formula:
12132 12133
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12134
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12135
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12136 12137 12138
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12139 12140 12141 12142
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12143
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12144 12145 12146 12147 12148 12149 12150 12151 12152
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12153
    Returns:
Y
Yibing Liu 已提交
12154
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12155 12156 12157 12158

    Examples:
        .. code-block:: python

12159
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12160 12161
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12162
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12163 12164
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12165
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12166 12167 12168 12169

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12170
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12188 12189 12190 12191 12192


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12209 12210

    Args:
12211 12212 12213
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12214 12215

    Returns:
12216
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12217 12218 12219 12220 12221 12222 12223 12224

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12225 12226 12227 12228 12229 12230 12231 12232 12233 12234
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12235 12236


S
shippingwang 已提交
12237
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12238
    """
S
shippingwang 已提交
12239 12240 12241 12242 12243 12244
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12245
    
S
shippingwang 已提交
12246
    .. code-block:: text
12247

S
shippingwang 已提交
12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12276
    Args: 
S
shippingwang 已提交
12277
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12278
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12279 12280

    Returns:
S
shippingwang 已提交
12281 12282
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12283 12284

    Raises:
S
shippingwang 已提交
12285
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12286 12287 12288

    Examples:
        .. code-block:: python
12289

12290
            import paddle.fluid as fluid
R
ruri 已提交
12291
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12292
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12293 12294 12295
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12296
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12297 12298 12299 12300 12301 12302 12303 12304 12305

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12306
    return out
S
Add  
shippingwang 已提交
12307 12308


12309
@templatedoc()
D
dengkaipeng 已提交
12310
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12311 12312 12313 12314 12315 12316 12317 12318
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12319
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12320 12321 12322
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12323 12324 12325

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12326
        same shape and same data type as the input.
12327 12328 12329 12330 12331 12332 12333

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12334
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12335
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12336
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12349 12350
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12351 12352 12353
    return out


S
sneaxiy 已提交
12354
class PyFuncRegistry(object):
S
sneaxiy 已提交
12355 12356 12357
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12358
        if func is None or not callable(func):
S
sneaxiy 已提交
12359 12360 12361
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12362
        # find named args using reflection
S
sneaxiy 已提交
12363 12364 12365 12366 12367 12368 12369
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12370 12371 12372
        '''
        Why record self here?

M
minqiyang 已提交
12373 12374
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12375
           to find the registered function corresponding
M
minqiyang 已提交
12376
           to :code:`idx`.
S
sneaxiy 已提交
12377

M
minqiyang 已提交
12378 12379
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12380
           whose reference count is 1 would cause
M
minqiyang 已提交
12381
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12382 12383
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12384
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12399 12400 12401 12402 12403 12404 12405 12406 12407
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12408

S
sneaxiy 已提交
12409 12410
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12411 12412

        ret = []
S
sneaxiy 已提交
12413 12414 12415
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12416 12417
                continue

S
sneaxiy 已提交
12418 12419
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12420

S
sneaxiy 已提交
12421 12422 12423
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12424

S
sneaxiy 已提交
12425
        return tuple(ret)
S
sneaxiy 已提交
12426 12427


S
sneaxiy 已提交
12428 12429 12430
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12431 12432 12433 12434 12435 12436 12437
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12438
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12439
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12467 12468 12469 12470 12471
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12472 12473 12474 12475 12476
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12477 12478
    
    Returns: 
12479
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12480 12481

    Examples:
12482
        .. code-block:: python
12483 12484
	    
            # example 1:
12485 12486 12487
            import paddle.fluid as fluid
            import six

12488 12489
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12490 12491 12492
            def tanh(x):
                return np.tanh(x)

12493 12494 12495
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12496 12497
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12498 12499
            
            # Creates a forward function for debugging running networks(print value)
12500 12501
            def debug_func(x):
                print(x)
12502 12503 12504 12505
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12519
                    # User-defined debug functions that print out the input LodTensor
12520 12521 12522 12523 12524
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12582
    """
S
sneaxiy 已提交
12583
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12584 12585 12586
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12587
        x = [x]
12588 12589 12590
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12591
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12592

S
sneaxiy 已提交
12593 12594 12595
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12596
        out_list = [out]
12597 12598
    elif isinstance(out, tuple):
        out_list = list(out)
12599 12600 12601
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12602 12603
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12604

S
sneaxiy 已提交
12605 12606
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12607
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12608 12609

    for each_out in out_list:
S
sneaxiy 已提交
12610 12611
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12612 12613
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12614

S
sneaxiy 已提交
12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12630 12631 12632 12633

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12634 12635
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12636 12637 12638
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12639
        })
S
sneaxiy 已提交
12640
    return out
S
sneaxiy 已提交
12641 12642 12643


# For debug usage
S
sneaxiy 已提交
12644 12645 12646 12647
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12659
    Parameters:
12660
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12661
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12662 12663 12664
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12665 12666
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12667
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12668 12669 12670 12671 12672
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12673 12674

    Returns:
S
SunGaofeng 已提交
12675 12676 12677 12678
        ${out_comment}.

    Return Type:
        Variable
12679 12680 12681 12682

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12683
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12684 12685
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12686
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12712 12713 12714 12715 12716 12717 12718 12719


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12720
               batch_roi_nums=None,
12721 12722
               name=None):
    """
12723
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12724 12725

    Args:
12726
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12727 12728 12729
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12730 12731 12732 12733 12734
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12735 12736 12737 12738 12739 12740
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12741
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12742
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12743 12744
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12745 12746 12747
        name (str, default None): The name of this operation.

    Returns:
12748
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12749 12750 12751 12752

    Examples:
        .. code-block:: python

12753
            ## prroi_pool without batch_roi_num
12754
            import paddle.fluid as fluid
12755 12756
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
12757
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12758 12759 12760 12761 12762 12763 12764 12765 12766
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
12778 12779 12780
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
12781 12782
    helper.append_op(
        type='prroi_pool',
12783
        inputs=inputs_op,
12784 12785 12786 12787 12788 12789 12790
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12791

M
minqiyang 已提交
12792

R
ruri 已提交
12793 12794 12795
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12796
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12797 12798 12799 12800 12801 12802 12803
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12804
    Parameters:
R
ruri 已提交
12805

R
ruri 已提交
12806 12807
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12808 12809

    Returns:
12810
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12811 12812 12813 12814 12815 12816 12817

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12853 12854 12855 12856 12857
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12858
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12870 12871 12872
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12873
                      The y_channel can be different with the x_channel of Input(X)
12874 12875
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12876 12877 12878 12879

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12880 12881
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12882 12883 12884 12885 12886

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12887
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12888
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12889 12890 12891 12892
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12893 12894 12895 12896 12897 12898 12899 12900
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12901 12902 12903 12904


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12905

H
heqiaozhi 已提交
12906
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12907

Z
zhoushiyu 已提交
12908
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
12909

Z
zhoushiyu 已提交
12910 12911
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
12912
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
12913 12914
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
12915

Z
zhoushiyu 已提交
12916 12917 12918 12919 12920 12921 12922
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
12923

H
heqiaozhi 已提交
12924
    Returns:
H
fix doc  
heqiaozhi 已提交
12925

Z
zhoushiyu 已提交
12926 12927
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
12928

H
heqiaozhi 已提交
12929
    Examples:
H
fix doc  
heqiaozhi 已提交
12930

H
heqiaozhi 已提交
12931
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12932

12933
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
12934 12935
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
12936 12937 12938 12939 12940 12941 12942 12943
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12944

H
heqiaozhi 已提交
12945 12946 12947 12948 12949 12950 12951 12952 12953
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12954
    return out
Z
zhoukunsheng 已提交
12955 12956 12957 12958 12959 12960 12961


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
12962
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
12963 12964

    Returns:
12965
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
12966 12967 12968 12969

    Examples:
        .. code-block:: python

12970
             import paddle.fluid as fluid
12971 12972 12973
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12974
             # condition is a tensor [True, False, True]
12975 12976 12977
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12978 12979

             # condition is a tensor [[True, False], [False, True]]
12980 12981 12982
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12983 12984

             # condition is a tensor [False, False, False]
12985 12986 12987 12988
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12989 12990 12991 12992 12993 12994 12995 12996 12997
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
12998 12999 13000 13001


def sign(x):
    """
13002
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13003 13004

    Args:
13005 13006
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13007 13008

    Returns:
13009
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13010 13011 13012 13013

    Examples:
        .. code-block:: python

13014 13015 13016
          import paddle.fluid as fluid
          import numpy as np

13017 13018
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13019 13020 13021
    """

    helper = LayerHelper("sign", **locals())
13022 13023 13024 13025
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13026 13027 13028 13029 13030
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13031 13032


Z
zhoukunsheng 已提交
13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13072 13073
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13074
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13075
    and an index tensor pointing to this unique tensor. 
13076

13077
    **NOTICE**: This op support the variable type of Tensor only.
13078 13079

    Args:
13080 13081
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13082

13083 13084 13085 13086
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13087
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13088
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13089 13090 13091 13092 13093 13094 13095 13096 13097

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13098
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13141
                    modulated=True,
13142 13143
                    name=None):
    """
13144
    **Deformable Convolution op**
13145 13146 13147

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13148 13149 13150
   
    
    Deformable Convolution v2: 
13151 13152 13153 13154
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13155 13156

    Deformable Convolution v1:
13157
    
13158 13159 13160 13161 13162
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13163
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13164
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13189 13190
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13191
        offset (Variable): The input coordinate offset of deformable convolution layer.
13192
            A Tensor with type float32, float64.
13193 13194 13195
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13196 13197
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13198
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13218
            The total batch size should be devisable by this value or smaller
13219 13220 13221
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13222
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13223 13224 13225 13226 13227
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13228
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13229 13230 13231 13232
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13233 13234
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13235 13236
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13237 13238
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13239
                  result. A Tensor with type float32, float64.
13240 13241 13242 13243 13244 13245
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13246 13247
          #deformable conv v2:
         
13248
          import paddle.fluid as fluid
13249 13250
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13251 13252 13253
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13254
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13255
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13256 13257 13258 13259

          #deformable conv v1:

          import paddle.fluid as fluid
13260 13261
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13262 13263
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13264
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13265
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13343 13344 13345

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13346 13347 13348 13349 13350


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13351
    This op returns a col buffer of sliding local blocks of input x, also known
13352
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13353
    all element will be rearranged as a column. While the convolution filter sliding over
13354 13355
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13356
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13374 13375 13376
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13389
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13390
                                  [dilation_h, dilation_w], or an integer dilation treated as
13391
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13392 13393 13394
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13395 13396 13397

    
    Returns:
S
SunGaofeng 已提交
13398
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13399
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13400 13401 13402 13403 13404 13405
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13406 13407 13408 13409 13410 13411

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13412
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13483 13484 13485 13486 13487 13488 13489
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13490
    
13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13517
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13518 13519 13520 13521 13522 13523 13524
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13525
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13526 13527 13528 13529
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13530 13531 13532 13533

    Examples:
      .. code-block:: python

13534 13535
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13558 13559
  
        # position_sensitive=False
13560
        import paddle.fluid as fluid
C
chengjuntao 已提交
13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13620 13621 13622 13623


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13624
    This operator recomputes the `input` indices according to the offset of the
13625 13626 13627 13628 13629
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13630
        
13631 13632
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13633

13634 13635
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13636 13637

    Examples:
13638
    ::
13639
    
13640
        Input:
13641 13642
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13643 13644 13645
          index_num = 20
          nshards = 2
          ignore_value = -1
13646
        
13647
        if shard_id == 0, we get:
13648 13649 13650
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13651
        if shard_id == 1, we get:
13652 13653 13654 13655
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13656
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13657
        - **index_num** (scalar): An integer defining the range of the index.
13658 13659
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13660
        - **ignore_value** (scalar): An integer value out of sharded index range
13661 13662

    Returns:
13663
        Variable: The sharded index of input.
13664 13665 13666 13667 13668

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13669 13670
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13695 13696 13697 13698 13699


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13700 13701 13702
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13703

13704
    The formula is as follows:
H
huangjun12 已提交
13705

13706
    .. math::
H
huangjun12 已提交
13707

13708
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13709

13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13755 13756


G
Guo Sheng 已提交
13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13832 13833 13834
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13835 13836
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13848 13849
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13850 13851
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13852
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13853
                                                  Default: float32.
13854 13855
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13856 13857 13858 13859 13860
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13861 13862
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13863

13864
    Raises:
T
tianshuo78520a 已提交
13865
        TypeError: The shape type should be list or tuple or variable.
13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13879 13880
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13881 13882

            # example 3:
13883
            # attr shape is a Variable, the data type must be int64 or int32.
13884
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13885
            result_3 = fluid.layers.uniform_random(var_shape)
13886 13887 13888 13889
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13890 13891

    """
13892
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
13893 13894
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
13895
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
13896

13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924
    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
13925
                    "Each dimension size given in shape must not be negative "
13926 13927 13928 13929 13930
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
13931
    attrs = {'seed': seed, 'min': min, 'max': max}
13932
    if in_dygraph_mode():
H
hong 已提交
13933
        attrs['shape'] = shape
13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
            if contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)