test_lrn_op.py 4.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
gongweibao 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid as fluid
import paddle.fluid.core as core
21
from op_test import OpTest
G
gongweibao 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


class TestLRNOp(OpTest):
    def get_input(self):
        ''' TODO(gongweibao): why it's grad diff is so large?
        x = np.ndarray(
            shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
        for m in range(0, self.N):
            for i in range(0, self.C):
                for h in range(0, self.H):
                    for w in range(0, self.W):
                        x[m][i][h][w] = m * self.C * self.H * self.W +  \
                                        i * self.H * self.W +  \
                                        h * self.W + w + 1
        '''
        x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
        return x + 1

    def get_out(self):
M
minqiyang 已提交
41
        start = -(self.n - 1) // 2
G
gongweibao 已提交
42 43
        end = start + self.n

44
        mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32")
G
gongweibao 已提交
45 46 47
        mid.fill(self.k)
        for m in range(0, self.N):
            for i in range(0, self.C):
Q
qingqing01 已提交
48
                for c in range(start, end):
G
gongweibao 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                    ch = i + c
                    if ch < 0 or ch >= self.C:
                        continue

                    s = mid[m][i][:][:]
                    r = self.x[m][ch][:][:]
                    s += np.square(r) * self.alpha

        mid2 = np.power(mid, -self.beta)
        return np.multiply(self.x, mid2), mid

    def get_attrs(self):
        attrs = {
            'n': self.n,
            'k': self.k,
            'alpha': self.alpha,
65 66
            'beta': self.beta,
            'data_format': self.data_format
G
gongweibao 已提交
67 68 69 70 71
        }
        return attrs

    def setUp(self):
        self.op_type = "lrn"
72 73
        self.init_test_case()

G
gongweibao 已提交
74 75 76 77 78 79 80 81 82 83 84
        self.N = 2
        self.C = 3
        self.H = 5
        self.W = 5

        self.n = 5
        self.k = 2.0
        self.alpha = 0.0001
        self.beta = 0.75
        self.x = self.get_input()
        self.out, self.mid_out = self.get_out()
85 86 87 88
        if self.data_format == 'NHWC':
            self.x = np.transpose(self.x, [0, 2, 3, 1])
            self.out = np.transpose(self.out, [0, 2, 3, 1])
            self.mid_out = np.transpose(self.mid_out, [0, 2, 3, 1])
G
gongweibao 已提交
89 90 91 92 93

        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
        self.attrs = self.get_attrs()

94 95 96
    def init_test_case(self):
        self.data_format = 'NCHW'

G
gongweibao 已提交
97 98 99 100
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
101
        self.check_grad(['X'], 'Out')
G
gongweibao 已提交
102 103


104 105 106 107 108
class TestLRNOpAttrDataFormat(TestLRNOp):
    def init_test_case(self):
        self.data_format = 'NHWC'


109
class TestLRNAPI(unittest.TestCase):
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def test_case(self):
        data1 = fluid.data(name='data1', shape=[2, 4, 5, 5], dtype='float32')
        data2 = fluid.data(name='data2', shape=[2, 5, 5, 4], dtype='float32')
        out1 = fluid.layers.lrn(data1, data_format='NCHW')
        out2 = fluid.layers.lrn(data2, data_format='NHWC')
        data1_np = np.random.random((2, 4, 5, 5)).astype("float32")
        data2_np = np.transpose(data1_np, [0, 2, 3, 1])

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(fluid.default_main_program(),
                          feed={"data1": data1_np,
                                "data2": data2_np},
                          fetch_list=[out1, out2],
                          return_numpy=True)

        self.assertTrue(
            np.allclose(results[0], np.transpose(results[1], (0, 3, 1, 2))))

    def test_exception(self):
        input1 = fluid.data(name="input1", shape=[2, 4, 5, 5], dtype="float32")
        input2 = fluid.data(
            name="input2", shape=[2, 4, 5, 5, 5], dtype="float32")

        def _attr_data_fromat():
            out = fluid.layers.lrn(input1, data_format='NDHW')

        def _input_dim_size():
            out = fluid.layers.lrn(input2)

        self.assertRaises(ValueError, _attr_data_fromat)
        self.assertRaises(ValueError, _input_dim_size)


G
gongweibao 已提交
148 149
if __name__ == "__main__":
    unittest.main()