jit_kernel_blas.cc 18.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19 20 21 22 23 24 25 26 27 28
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

namespace jit = platform::jit;

T
tensor-tang 已提交
29
/* VMUL JitKernel */
T
tensor-tang 已提交
30
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
31 32
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
33 34 35
  explicit VMulKernelImpl(int d) : VMulKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
36 37
      z[i] = x[i] * y[i];
    }
T
tensor-tang 已提交
38
  }
T
tensor-tang 已提交
39
};
T
tensor-tang 已提交
40

T
tensor-tang 已提交
41
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
42 43 44 45 46
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VMulKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsMul(this->num_, x, y, z);      \
T
tensor-tang 已提交
47 48
  }

T
tensor-tang 已提交
49 50 51 52 53
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VMulKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdMul(this->num_, x, y, z);         \
T
tensor-tang 已提交
54 55
  }

T
tensor-tang 已提交
56 57
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
58 59
#endif

T
tensor-tang 已提交
60 61 62 63 64 65 66 67 68
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VMulKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_mul_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
69 70
  }

T
tensor-tang 已提交
71 72
// avx > for > mkl
#ifdef __AVX__
T
tensor-tang 已提交
73
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
74 75
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
76
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
77 78
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
79
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
80
#endif
T
tensor-tang 已提交
81
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
82 83 84
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
85

T
tensor-tang 已提交
86
/* VADD JitKernel */
T
tensor-tang 已提交
87
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
88 89
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
90 91 92
  explicit VAddKernelImpl(int d) : VAddKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
93 94
      z[i] = x[i] + y[i];
    }
T
tensor-tang 已提交
95
  }
T
tensor-tang 已提交
96
};
T
tensor-tang 已提交
97

T
tensor-tang 已提交
98
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
99 100 101 102 103
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VAddKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsAdd(this->num_, x, y, z);      \
T
tensor-tang 已提交
104 105
  }

T
tensor-tang 已提交
106 107 108 109 110
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VAddKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdAdd(this->num_, x, y, z);         \
T
tensor-tang 已提交
111 112
  }

T
tensor-tang 已提交
113 114
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
115 116
#endif

T
tensor-tang 已提交
117 118 119 120 121 122 123 124 125
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_add_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
126
  }
T
tensor-tang 已提交
127
#ifdef __AVX__
T
tensor-tang 已提交
128
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
129 130
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
131
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
132 133
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
134
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
135
#endif
T
tensor-tang 已提交
136
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
137

T
tensor-tang 已提交
138 139 140
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
141

T
tensor-tang 已提交
142 143 144 145
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
146 147 148
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
149 150 151
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
152 153
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
154 155 156 157 158 159
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
160 161 162 163 164
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
165 166
  }

T
tensor-tang 已提交
167 168 169 170 171
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
172 173
  }

T
tensor-tang 已提交
174 175
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
176 177
#endif

T
tensor-tang 已提交
178 179 180 181 182 183 184 185 186
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
187
  }
T
tensor-tang 已提交
188 189 190 191 192 193 194 195 196
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
197 198 199
  }

#ifdef __AVX__
T
tensor-tang 已提交
200 201
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
202 203
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
204 205
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
206 207
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
208 209
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
210 211 212
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
213 214 215 216
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
217

T
tensor-tang 已提交
218 219 220 221
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
222 223 224
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
225 226 227 228 229
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
230 231 232 233 234 235 236
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
237 238
  }

T
tensor-tang 已提交
239 240 241 242 243 244 245 246 247 248
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
364 365 366 367 368
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
369 370 371 372 373 374 375 376
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* VAddRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
      z[i] = x[i] + y[i];
      z[i] = z[i] > 0 ? z[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ8>::Compute(   \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx = _mm256_loadu_ps(x);                   \
    __m256 tmpy = _mm256_loadu_ps(y);                   \
    tmpy = _mm256_add_ps(tmpx, tmpy);                   \
    tmpy = _mm256_max_ps(tmpy, _mm256_setzero_ps());    \
    _mm256_storeu_ps(z, tmpy);                          \
  }

#define INTRI16_FLOAT(isa)                              \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ16>::Compute(  \
      const float* x, const float* y, float* z) const { \
    __m256 zeros = _mm256_setzero_ps();                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                   \
    __m256 tmp1 = _mm256_loadu_ps(y);                   \
    tmp0 = _mm256_add_ps(tmp0, tmp1);                   \
    tmp0 = _mm256_max_ps(tmp0, zeros);                  \
    tmp1 = _mm256_loadu_ps(x + 8);                      \
    __m256 tmp2 = _mm256_loadu_ps(y + 8);               \
    tmp1 = _mm256_add_ps(tmp1, tmp2);                   \
    tmp1 = _mm256_max_ps(tmp1, zeros);                  \
    _mm256_storeu_ps(z, tmp0);                          \
    _mm256_storeu_ps(z + 8, tmp1);                      \
  }

#define INTRI_COMMON_FLOAT(isa, block)                             \
  template <>                                                      \
  VAddReluKernelImpl<float, isa, block>::VAddReluKernelImpl(int d) \
      : VAddReluKernel<float>() {                                  \
    this->num_ = d;                                                \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                          \
    this->rest_ = d - this->end_;                                  \
  }                                                                \
  template <>                                                      \
  void VAddReluKernelImpl<float, isa, block>::Compute(             \
      const float* x, const float* y, float* z) const {            \
    __m256 zeros = _mm256_setzero_ps();                            \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {        \
      __m256 tmpx = _mm256_loadu_ps(x + i);                        \
      __m256 tmpy = _mm256_loadu_ps(y + i);                        \
      tmpy = _mm256_add_ps(tmpx, tmpy);                            \
      tmpy = _mm256_max_ps(tmpy, zeros);                           \
      _mm256_storeu_ps(z + i, tmpy);                               \
    }                                                              \
    for (int i = this->end_; i < this->num_; ++i) {                \
      z[i] = x[i] + y[i];                                          \
      z[i] = z[i] > 0 ? z[i] : 0;                                  \
    }                                                              \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_COMMON_FLOAT(jit::avx, kGT16);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_COMMON_FLOAT(jit::avx2, kGT16);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_COMMON_FLOAT(jit::avx512f, kGT16);
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_COMMON_FLOAT

T
tensor-tang 已提交
464 465 466
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
T
tensor-tang 已提交
467
REGISTER_JITKERNEL(vaddb, VAddBiasKernel);
T
tensor-tang 已提交
468
REGISTER_JITKERNEL(vrelu, VReluKernel);
T
tensor-tang 已提交
469
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
470
REGISTER_JITKERNEL(videntity, VIdentityKernel);
T
tensor-tang 已提交
471 472 473 474 475

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle