distribute_transpiler.py 80.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140
    enable_dc_asgd = False
W
Wu Yi 已提交
141 142
    # supported modes: pserver, nccl2
    mode = "pserver"
143
    print_log = False
G
gongweibao 已提交
144 145


Y
gen rst  
yi.wu 已提交
146
class DistributeTranspiler(object):
Y
yi.wu 已提交
147 148 149 150
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
151
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
152

W
Wu Yi 已提交
153 154 155 156 157 158 159 160 161
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
162 163 164 165

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
166 167 168 169 170 171
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
172 173
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
174
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
175 176 177 178 179 180 181 182
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
183

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
195
    """
Y
Yancey1989 已提交
196

G
gongweibao 已提交
197 198 199 200 201 202 203 204 205
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

206 207 208
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
209 210 211
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

239 240 241 242 243
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
244
                  sync_mode=True,
W
Wu Yi 已提交
245 246
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
247
        """
Y
yi.wu 已提交
248 249 250 251 252 253 254
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
255 256
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
257 258
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
259 260 261
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
262
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
263 264
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
265 266 267
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
268 269 270
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
271 272
        if startup_program is None:
            startup_program = default_startup_program()
273
        self.origin_program = program
W
Wu Yi 已提交
274 275
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
276

W
Wu Yi 已提交
277 278 279 280 281 282 283 284 285
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

286 287 288 289 290 291 292
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
293
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
294 295
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
296
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
297
        self.grad_name_to_param_name = dict()
298 299
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
300
            self.grad_name_to_param_name[grad_var.name] = param_var.name
301

T
tangwei12 已提交
302 303 304 305 306 307
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

308
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
309
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
310
        self._init_splited_vars()
311

G
gongweibao 已提交
312
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
313
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
314
        send_vars = []
315 316 317 318 319 320

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
321
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
322

G
gongweibao 已提交
323
        if not self.config.slice_var_up:
324 325
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
326

327
        self.grad_name_to_send_dummy_out = dict()
328
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
329
            eplist = ps_dispatcher.dispatch(splited_vars)
330

G
gongweibao 已提交
331
            if not self.config.slice_var_up:
332 333
                assert (len(splited_vars) == 1)

334
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
335
            if len(splited_vars) == 1:
336
                splited_grad_varname = splited_vars[0].name
337 338
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
339
            elif len(splited_vars) > 1:
340
                orig_var = program.global_block().vars[splited_grad_varname]
341 342
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
343
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
344
                index += 1
Y
Yancey1989 已提交
345 346
            else:
                AssertionError("Can not insert the send op by original "
347
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
348

W
Wu Yi 已提交
349 350
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
351
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
352

W
Wu Yi 已提交
353 354 355 356
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
357
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
358
                index=index + 1,
359
                type="send",
Y
update  
Yancey1989 已提交
360
                inputs={"X": splited_vars},
361
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
362 363
                attrs={
                    "epmap": eplist,
364
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
365 366 367 368
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
369
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
370
                })
Y
update  
Yancey1989 已提交
371 372
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
373 374

        if self.sync_mode:
W
Wu Yi 已提交
375 376
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
377 378 379 380
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
381
            input_deps = list(self.grad_name_to_send_dummy_out.values())
382

Y
Yancey1989 已提交
383 384
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
385
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
386
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
387 388
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
389 390
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
391
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
392
                })
Y
Yancey1989 已提交
393

G
gongweibao 已提交
394
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
395
        recv_vars = []
Y
update  
Yancey1989 已提交
396
        for _, var in enumerate(send_vars):
397
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
398
        ps_dispatcher.reset()
Y
Yancey1989 已提交
399 400
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
401
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
402 403
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
404

Y
Yancey1989 已提交
405
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
406
        all_recv_outputs = []
407
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
408 409 410 411
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
412 413 414 415
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
416
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
417 418
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
419 420 421 422 423 424 425 426 427
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
428 429
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
430
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
431 432 433
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
W
Wu Yi 已提交
434
                    "trainer_id": self.trainer_id,
435
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
436 437
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
438
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
439
                })
T
typhoonzero 已提交
440

Q
qiaolongfei 已提交
441
        if self.sync_mode:
W
Wu Yi 已提交
442
            # form a WAW dependency
Q
qiaolongfei 已提交
443 444 445
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
446
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
447 448
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
449
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
450 451
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
452

453
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
454 455
            if len(splited_var) <= 1:
                continue
456
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
457
            program.global_block().append_op(
T
typhoonzero 已提交
458
                type="concat",
T
typhoonzero 已提交
459
                inputs={"X": splited_var},
T
typhoonzero 已提交
460
                outputs={"Out": [orig_param]},
461 462 463 464
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
465

G
gongweibao 已提交
466 467
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

468
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
469 470
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
471
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
472

W
Wu Yi 已提交
473
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
474 475 476 477 478 479
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
480
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
481
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
482
        lr_ops = self._get_lr_ops()
483
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
484 485
        delete_ops(self.origin_program.global_block(), lr_ops)

486 487
        # delete table init op
        if self.has_distributed_lookup_table:
488 489 490
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
491 492
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
493 494 495 496 497
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
498
            table_init_op = table_param_init_op[0]
499 500 501 502 503 504
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
505

506
        self.origin_program.__str__()
G
gongweibao 已提交
507

W
Wu Yi 已提交
508 509 510
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

511
        return self.origin_program
T
typhoonzero 已提交
512

W
Wu Yi 已提交
513
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
514 515 516 517
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
518
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
519
            eplist (list): A list of strings indicating
G
gongweibao 已提交
520 521 522 523

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
524
        startup_program = self.startup_program
G
gongweibao 已提交
525 526 527 528

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
529
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
550
                inputs={"X": []},
G
gongweibao 已提交
551 552 553 554 555 556
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
557 558
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
559 560 561
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
562
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
563 564 565 566 567
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
568
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
569
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
570 571
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
572
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
573
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
574 575 576 577 578 579 580 581 582 583
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
584 585 586 587 588 589 590 591
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
592 593
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
594
        Get parameter server side program.
595

Y
yi.wu 已提交
596 597
        Args:
            endpoint (str): current parameter server endpoint.
598

Y
yi.wu 已提交
599 600
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
601
        """
Y
yi.wu 已提交
602 603 604 605
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
606 607 608
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
609 610
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
611
        pserver_program.random_seed = self.origin_program.random_seed
612
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
613 614 615 616 617 618 619 620
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
621 622 623 624 625
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
626 627 628 629 630 631 632 633 634
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
635
            if self.sync_mode and self.trainer_num > 1:
636
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
637 638 639 640 641 642 643 644 645
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
646

647 648 649
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
650
        # step 3
651
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
652 653 654
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
655
        # step 3.2
T
typhoonzero 已提交
656 657 658 659
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
660 661
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
662
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
663
        # step 3.3
W
Wu Yi 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
682
        # Iterate through the ops, and if an op and the optimize ops
683
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
684
        # append it into the sub program.
T
typhoonzero 已提交
685 686 687

        global_ops = []

Y
wip  
yi.wu 已提交
688 689
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
690
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
691
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
692
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
693
            elif op not in lr_ops:
Q
Qiyang Min 已提交
694
                self._append_pserver_non_opt_ops(block, op)
695 696 697 698 699 700

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
701

Y
Yancey1989 已提交
702
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
703 704 705 706 707 708 709 710
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
711
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
712 713 714

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
715
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
716 717

            # clone ops
Y
Yancey1989 已提交
718 719
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
720
                # clone sub_block of op
Y
Yancey1989 已提交
721
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
722 723

            # reset the block of op
W
Wu Yi 已提交
724
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
725

726
        # append lr decay ops to the child block if exists
727
        lr_ops = self._get_lr_ops()
728 729
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
730
        if len(lr_ops) > 0:
W
Wu Yi 已提交
731
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
732
                pserver_program.num_blocks - 1)
733
            optimize_blocks.append(lr_decay_block)
734
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
735
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
736
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
737 738
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
739

T
typhoonzero 已提交
740
        # append op to the current block
Q
qiaolongfei 已提交
741
        grad_to_block_id = []
Q
qiaolongfei 已提交
742
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
743
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
744
            per_opt_block = pserver_program._create_block(pre_block_idx)
745
            optimize_blocks.append(per_opt_block)
746
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
747
            # append grad merging ops before clip and weight decay
748 749
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
750
            for _, op in enumerate(self.optimize_ops):
751 752 753 754 755
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
756 757 758
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
759 760 761 762 763 764
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
765
                            op not in global_ops:
766 767 768 769 770
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
771

772
        # dedup grad to ids list
W
Wu Yi 已提交
773
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
774
        # append global ops
775
        if global_ops:
W
Wu Yi 已提交
776
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
777
                pserver_program.num_blocks - 1)
778
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
779
            for glb_op in global_ops:
X
Xi Chen 已提交
780
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
781
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
782

783
        # process distributed lookup_table
Q
qiaolongfei 已提交
784
        prefetch_var_name_to_block_id = []
785 786
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
787
            table_opt_block = self._create_table_optimize_block(
788
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
789
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
790
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
791
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
792 793
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
794

T
tangwei12 已提交
795
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
796 797
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
798

799
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
800 801
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
802 803 804 805 806 807
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
808
        attrs = {
809
            "optimize_blocks": optimize_blocks,
810 811 812
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
813
            "grad_to_block_id": grad_to_block_id,
814
        }
T
tangwei12 已提交
815 816

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
817
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
818 819
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
820

T
tangwei12 已提交
821 822 823 824
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
825 826 827 828 829
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
830
            attrs=attrs)
831

T
tangwei12 已提交
832
        # add distributed attrs
833 834
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
835

W
Wu Yi 已提交
836
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
837 838
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
839 840
        return pserver_program

W
Wu Yi 已提交
841 842 843 844 845 846
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
847

W
Wu Yi 已提交
848 849 850 851
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
852 853
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
854 855
        return pserver_prog, pserver_startup

856 857
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
858
                            pserver_program=None,
859
                            startup_program=None):
T
typhoonzero 已提交
860
        """
W
Wu Yi 已提交
861 862
        **Deprecated**

T
typhoonzero 已提交
863 864 865
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
866 867 868

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
869 870
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
871
                when initalizing
872

Y
yi.wu 已提交
873 874
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
875
        """
876 877 878
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
879
        if pserver_program != None:
880 881 882
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
883
        if startup_program != None:
884 885 886
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
887

T
typhoonzero 已提交
888
        s_prog = Program()
W
Wu Yi 已提交
889
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
890
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
891 892 893 894 895 896 897 898 899 900 901
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
902
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
903
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
904
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
905 906 907 908
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
909
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
910 911
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
912 913 914 915 916 917 918 919 920 921
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
922 923

            if op_on_pserver:
924 925 926
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
927 928 929
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
930
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
931 932 933 934
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
935
                    attrs=op.all_attrs())
W
Wu Yi 已提交
936 937 938 939 940 941 942 943 944
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
945 946

        # add slice vars
947
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
948

T
typhoonzero 已提交
949 950
        return s_prog

T
tangwei12 已提交
951
    def _get_slice_vars_and_attrs(self, endpoint):
952
        slice_vars_and_attrs = {}
T
tangwei12 已提交
953
        block_suffix = "block"
954
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
955
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
956
            if not block_name:
957 958
                continue

T
tangwei12 已提交
959
            block_idx = int(block_name.split(block_suffix)[1])
960 961
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
962
            skip_dim0 = 0
963 964
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
965
                skip_dim0 += slice_var.shape[0]
966
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
967
        return slice_vars_and_attrs
968

969 970
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1010
    def _init_splited_vars(self):
Y
yi.wu 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1034
        if self.config.slice_var_up:
Y
yi.wu 已提交
1035 1036
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1037 1038 1039
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1040
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1041 1042
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1043 1044 1045
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1046 1047 1048 1049
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1050 1051
        assert (len(grad_blocks) == len(param_blocks))

1052
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1053 1054
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1055
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1056 1057 1058 1059
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1060
        # dict(grad_splited_var -> param_splited_var)
1061
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1062 1063 1064
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1065
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1066
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1067 1068

        # create mapping of endpoint -> split var to create pserver side program
1069
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1079
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1080 1081
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1082
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1083
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1084 1085
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1086 1087
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1088 1089 1090 1091 1092 1093

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1094 1095
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1096
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1097 1098 1099
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1100 1101
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1102 1103
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1104 1105 1106
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1107
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1108
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1109 1110

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1111
                    self.all_out_emb_vars.append(out_var)
1112 1113

                    # delete lookup_table_op
1114
                    delete_ops(program.global_block(), [op])
1115 1116 1117
                    # break for loop
                    break

S
seiriosPlus 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1164
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1165
        # 2. add split_ids_op and send_op to send gradient to pservers
1166

1167 1168
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1169
        table_grad_name = grad_var_name(self.table_name)
1170 1171 1172 1173
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1174
                program.global_block()._insert_op(
1175 1176 1177 1178 1179
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1180 1181
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1182
                program.global_block()._insert_op(
1183
                    index=op_index + 2,
1184
                    type="send",
1185
                    inputs={'X': self.trainer_side_table_grad_list},
1186 1187 1188 1189 1190
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1191
                    attrs={
1192
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1193
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1194
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1195 1196 1197 1198 1199
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1200
                    })
1201 1202 1203 1204 1205 1206
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1207
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1233
        return prefetch_var_name_to_block_id
1234 1235

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1236
                                     pre_block_idx, grad_to_block_id):
1237
        # STEP: create table optimize block
1238
        table_opt_block = pserver_program._create_block(pre_block_idx)
1239
        # create table param and grad var in pserver program
1240 1241 1242 1243 1244 1245 1246
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1247 1248
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1249

T
tangwei12 已提交
1250
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1251 1252
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1253 1254 1255
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1256 1257
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1258
            shape=table_shape,
Y
Yancey1989 已提交
1259 1260 1261
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1262

1263 1264
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1265
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1266
            self.origin_program.global_block().vars[grad_var_name(
1267
                self.table_name)])
1268

1269 1270 1271
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1272

1273 1274 1275
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1276
            pserver_side_table_grad_list = [
1277 1278 1279 1280 1281 1282 1283 1284 1285
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1286
            # append sum op for pserver_side_table_grad_list
1287 1288
            table_opt_block.append_op(
                type="sum",
1289
                inputs={"X": pserver_side_table_grad_list},
1290 1291
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1292 1293
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1294
            origin_grad_name = grad_var.name
1295 1296
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1297 1298
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1299
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1300
            grad_var = pserver_program.global_block()._rename_var(
1301
                origin_grad_name, splited_grad_name)
1302 1303 1304 1305 1306 1307 1308

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1309
        # only support sgd now
1310 1311 1312
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1313
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1314

1315 1316 1317
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1318 1319
        return table_opt_block

T
tangwei12 已提交
1320 1321 1322 1323 1324
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1325
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1326
            name="kLookupTablePath",
T
tangwei12 已提交
1327 1328
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1329

W
Wu Yi 已提交
1330
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1331
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1332 1333 1334 1335
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1336
            attrs={'file_path': "none"})
T
tangwei12 已提交
1337 1338 1339

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1340 1341 1342 1343 1344
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1345
        Create vars for each split.
T
typhoonzero 已提交
1346 1347
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1348 1349 1350 1351
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1352
        Returns:
1353
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1354
                from original var name to each var split.
T
typhoonzero 已提交
1355
        """
1356 1357

        # varname->[(block_id, current_block_size)]
1358
        block_map = collections.OrderedDict()
1359

1360
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1361 1362
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1363
            if varname not in block_map:
T
typhoonzero 已提交
1364
                block_map[varname] = []
1365
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1366

M
minqiyang 已提交
1367
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1368
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1369
            if len(splited) == 1:
1370
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1371
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1372
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1373
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1374 1375 1376 1377 1378
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1379
                continue
T
typhoonzero 已提交
1380
            var_mapping[varname] = []
T
typhoonzero 已提交
1381 1382 1383 1384
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1385

T
typhoonzero 已提交
1386
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1387
                size = block[1]
M
minqiyang 已提交
1388
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1389 1390 1391
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1392
                new_var_name = ""
1393
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1394
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1395
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1396 1397
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1398
                                   (varname, i)
T
typhoonzero 已提交
1399
                var = program.global_block().create_var(
T
typhoonzero 已提交
1400 1401
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1402
                    dtype=orig_var.dtype,
1403
                    type=orig_var.type,
T
typhoonzero 已提交
1404
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1405
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1406
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1407
        return var_mapping
T
done  
typhoonzero 已提交
1408

1409
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1410 1411 1412 1413 1414 1415
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1416
            persistable=persistable)
T
done  
typhoonzero 已提交
1417

Y
Yancey1989 已提交
1418
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1419 1420 1421 1422
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1423
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1424 1425 1426 1427
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1428 1429 1430 1431
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1432 1433 1434 1435
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1436
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1437 1438 1439 1440
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1441 1442 1443 1444
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1445 1446 1447
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1448

T
typhoonzero 已提交
1449 1450 1451 1452
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1453
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1466
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1467 1468
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1469 1470
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1471
                return param_shape
1472 1473 1474
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1475 1476 1477
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1478 1479
        elif op_type == "sgd":
            pass
1480 1481 1482 1483
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1484 1485
        return orig_shape

1486 1487
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1488
        orig_var_name = ""
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1499
        else:
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1522
            return None
1523 1524 1525 1526
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1527
        else:
1528
            merged_var_name = orig_varname
1529 1530

        merged_var = pserver_block.vars[merged_var_name]
1531 1532 1533
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1534
            for i in range(self.trainer_num):
1535
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1536
                                   (merged_var_name, i)
1537 1538 1539 1540
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1541 1542
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1543 1544 1545 1546 1547
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1548
        return merged_var
T
typhoonzero 已提交
1549

W
Wu Yi 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1612
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1613
                            grad_to_block_id, origin_program, merged_var):
1614
        program = optimize_block.program
T
typhoonzero 已提交
1615
        pserver_block = program.global_block()
1616
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1627 1628 1629 1630
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1631
        for key in opt_op.input_names:
T
typhoonzero 已提交
1632
            if key == "Grad":
W
Wu Yi 已提交
1633 1634 1635 1636
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1637
            elif key == "Param":
W
Wu Yi 已提交
1638
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1639 1640
                if not param_block:
                    return
T
typhoonzero 已提交
1641
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1642
                    name=param_block.name,
T
typhoonzero 已提交
1643
                    persistable=True,
T
typhoonzero 已提交
1644 1645 1646
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1647
            elif key == "LearningRate":
1648
                # learning rate variable has already be created by non-optimize op,
1649
                # don't create it once again.
1650
                lr_varname = opt_op.input(key)[0]
1651
                if lr_varname in pserver_block.vars:
1652 1653 1654 1655 1656 1657 1658 1659 1660
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1661

T
typhoonzero 已提交
1662
        for key in opt_op.input_names:
1663
            new_shape = None
W
Wu Yi 已提交
1664
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1665
                continue
1666
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1667
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1668
            # update accumulator variable shape
1669 1670
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1671
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1672 1673 1674 1675 1676
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1677

1678 1679 1680 1681 1682 1683 1684
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1685
        # change output's ParamOut variable
1686 1687
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1688
        outputs["ParamOut"] = new_inputs["Param"]
1689
        optimize_block.append_op(
T
typhoonzero 已提交
1690 1691
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1692
            outputs=outputs,
G
gongweibao 已提交
1693
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1706
        grad_block = None
M
minqiyang 已提交
1707
        for _, g in six.iteritems(var_dict):
1708
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1709
                # skip per trainer vars
1710
                if g.name.find(".trainer_") == -1:
1711 1712 1713 1714 1715
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1716 1717
        return grad_block

Q
Qiyang Min 已提交
1718 1719 1720
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1721
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1722 1723 1724 1725
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1726
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1727 1728 1729

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1730
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1731 1732 1733 1734
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1735
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1736

Y
Yancey1989 已提交
1737
        return block.append_op(
G
gongweibao 已提交
1738
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1739 1740

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1741
        program = optimize_block.program
1742
        # Append the ops for parameters that do not need to be optimized/updated
1743 1744
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1745
        for key, varlist in six.iteritems(inputs):
1746 1747
            if not isinstance(varlist, list):
                varlist = [varlist]
1748 1749 1750
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1751
                # for inputs/outputs
1752
                grad_block = self._get_pserver_grad_param_var(
1753 1754
                    var, program.global_block().vars)
                if grad_block:
1755
                    varlist[i] = grad_block
1756
                elif var.name not in program.global_block().vars:
1757 1758 1759 1760 1761
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1762

1763 1764
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1765
        for key, varlist in six.iteritems(outputs):
1766 1767
            if not isinstance(varlist, list):
                varlist = [varlist]
1768 1769 1770
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1771 1772
                    var, program.global_block().vars)
                if grad_block:
1773
                    varlist[i] = grad_block
1774
                elif var.name not in program.global_block().vars:
1775 1776 1777 1778 1779
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1780

Y
Yancey1989 已提交
1781
        return optimize_block.append_op(
T
typhoonzero 已提交
1782
            type=opt_op.type,
T
typhoonzero 已提交
1783 1784
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1785
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1786

1787 1788 1789 1790
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1791
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1792
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1793 1794 1795 1796 1797 1798
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1799 1800
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1801 1802 1803 1804 1805 1806
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1807
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1808
        if "Param" in op.input_names and \
T
tangwei12 已提交
1809
                "LearningRate" in op.input_names:
1810 1811 1812 1813 1814 1815 1816
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1817
        if op.input("Param")[0] in param_names:
1818 1819 1820
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1821
                param = op.input("Param")[0]
T
typhoonzero 已提交
1822
                if same_or_split_var(n, param) and n != param:
1823 1824 1825
                    return True
            return False

T
typhoonzero 已提交
1826
    def _get_input_map_from_op(self, varmap, op):
1827
        """Returns a dict from op input name to the vars in varmap."""
1828
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1840
        """Returns a dict from op output name to the vars in varmap."""
1841
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1851 1852

    def _get_lr_ops(self):
1853 1854 1855
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1856 1857 1858 1859
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1860 1861 1862 1863 1864
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1865 1866 1867 1868
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1869
            if self._is_optimizer_op(op):
1870 1871 1872 1873
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1874
        block = self.origin_program.global_block()
1875 1876 1877 1878 1879
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1880

1881 1882 1883 1884 1885
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1886
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1887 1888 1889 1890 1891 1892
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1893 1894
                    # we only need to append op for once
                    break
1895
        return lr_ops
Y
Yancey1989 已提交
1896

W
Wu Yi 已提交
1897 1898 1899 1900 1901
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1902 1903
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1904 1905 1906
            return True
        return False

Y
Yancey1989 已提交
1907
    def _get_optimize_pass(self):
1908
        """
1909
        Get optimizer operators, parameters and gradients from origin_program
1910 1911 1912 1913
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1914 1915 1916
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1917 1918
        # tmp set to dedup
        optimize_params = set()
1919
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1920
        for op in block.ops:
W
Wu Yi 已提交
1921
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1922
                opt_ops.append(op)
1923 1924 1925 1926 1927 1928
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1929 1930
                        params_grads.append([
                            origin_var_dict[param_name],
1931
                            origin_var_dict[grad_name]
1932
                        ])
Y
Yancey1989 已提交
1933 1934 1935
            else:
                pass
        return opt_ops, params_grads