conv.py 69.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
L
LielinJiang 已提交
16
from ...device import get_cudnn_version
17
from ...static import Variable
Z
zhiboniu 已提交
18
from ...fluid import dygraph_utils
19 20
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding, _contain_var, _convert_to_tensor_list
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
21
from ...framework import ParamAttr
22
from ...fluid.layer_helper import LayerHelper
23 24 25
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
26
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
27 28
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
29 30
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
31 32
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
33 34 35 36
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
37
from paddle.fluid.framework import _non_static_mode
38

39 40
__all__ = []

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
82 83
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
84
            if _is_symmetric_padding(padding, num_dims):
85 86 87 88
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
89 90
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95
            padding = convert_to_list(padding, num_dims, 'padding')
96 97 98 99 100
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
101
        padding = convert_to_list(padding, num_dims, 'padding')
102 103
    if not all([p >= 0 for p in padding]):
        raise ValueError(
104 105
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
106 107 108
    return padding, padding_algorithm


L
LielinJiang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

124
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
125
    if in_dygraph_mode() and op_type == "conv2d":
126 127 128
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
129
        if bias is not None:
130 131
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
132 133 134 135
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
136
            if len(bias.shape) < len(x.shape):
137
                tmp_bias = _C_ops.reshape(
138
                    bias, [1 for i in range(channel_dim)] + bias.shape +
C
Chen Weihang 已提交
139
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
140
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
141
            else:
142
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
143 144
        else:
            return pre_bias
145 146

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
147 148 149 150
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
151 152 153
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
154
            tmp_bias = _C_ops.reshape(
155 156
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
157
            return _C_ops.add(pre_bias, tmp_bias)
158 159 160 161
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
162 163 164
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
165 166 167
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
168
            tmp_bias = _C_ops.reshape(
169 170
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
171
            return _C_ops.add(pre_bias, tmp_bias)
172 173 174
        else:
            return pre_bias

Z
zhiboniu 已提交
175
    if in_dynamic_mode():
L
LielinJiang 已提交
176 177 178 179 180
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
181
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
205 206 207 208
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
209 210
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
211 212 213 214 215 216 217 218 219 220
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
221 222 223 224 225
        else:
            out = pre_bias
    return out


W
whs 已提交
226 227 228 229 230 231 232 233 234
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
235
    r"""
W
whs 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
251
        Out = \sigma (W \ast X + b)
W
whs 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
278
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
279 280

    Args:
281
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
282 283
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
284
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
285
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
286
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
287
            contain one integers, (stride_size). Default: 1.
288
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
289 290 291 292 293 294
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
295
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
296 297 298 299 300 301
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
302
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
303 304 305
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
306 307
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
308 309 310
           None by default.

    Returns:
311
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
330

W
whs 已提交
331 332 333 334 335
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
336

W
whs 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
350
    channel_last = (data_format == "NLC")
W
whs 已提交
351 352
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
353 354 355 356
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
357 358 359
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
360
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
361 362
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
363 364
    if groups <= 0:
        raise ValueError(
365 366
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
380

W
whs 已提交
381
    if len(padding) == 2:
382
        padding = [0] * 2 + padding
W
whs 已提交
383
    elif len(padding) == 1:
384
        padding = [0] + padding
W
whs 已提交
385 386
    else:
        raise ValueError(
387 388
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
389 390 391
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
392 393

    l_type = "conv2d"
394 395

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
396 397
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
398 399 400
        l_type = 'depthwise_conv2d'
        use_cudnn = False

401
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
402
    if is_compiled_with_npu():
403 404 405 406 407
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

408
    squeeze_aixs = -3 if channel_last else -2
409
    x = unsqueeze(x, axis=[squeeze_aixs])
410

411 412 413 414 415 416 417 418
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
419 420 421 422
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
423
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
442
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
443 444
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
445 446 447 448
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
449 450
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
451
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
452 453 454
    return out


455
def conv2d(x,
456 457 458
           weight,
           bias=None,
           stride=1,
459
           padding=0,
460 461 462 463
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
464
    r"""
S
swtkiwi 已提交
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

483
    ..  math::
484

485
        Out = \sigma (W \ast X + b)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

510
        ..  math::
511

512 513
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
514 515

    Args:
516
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
517
            of input is float16 or float32 or float64.
518
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
519
            the number of output channels, g is the number of groups, kH is the filter's
520
            height, kW is the filter's width.
521
        bias (Tensor, optional): The bias with shape [M,].
522 523
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
524
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
525 526 527 528
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
529 530
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
531
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
532
            when `data_format` is `"NHWC"`, `padding` can be in the form
533 534
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
535
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
536 537
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
538
            Default: dilation = 1.
C
cnn 已提交
539
        groups (int): The groups number of the Conv2D Layer. According to grouped
540 541 542 543
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
544
        data_format (str, optional): Specify the data format of the input, and the data format of the output
545 546 547
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
548 549
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
550 551 552
           None by default.

    Returns:
553
        A Tensor representing the conv2d result, whose data type is the same with input.
554 555 556 557

    Examples:
        .. code-block:: python

558
          import paddle
559 560
          import paddle.nn.functional as F

561 562
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
563 564 565 566

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

567 568 569 570 571 572 573 574 575 576
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
577 578 579 580
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
581
    num_channels = x.shape[channel_dim]
582 583
    num_filters = weight.shape[0]
    if num_channels < 0:
584
        raise ValueError("The channel dimension of the input({}) "
585
                         "should be defined. Received: {}.".format(
586
                             x.shape, num_channels))
587 588
    if groups <= 0:
        raise ValueError(
589 590
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
591 592 593 594
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
595
            ", the groups is {}".format(num_channels, x.shape, groups))
596 597 598 599 600 601
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

602 603
    cudnn_version = get_cudnn_version()

604 605
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
606

607 608
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
609 610
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
611 612

    l_type = "conv2d"
613 614
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
615
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
616
        if is_compiled_with_rocm():
617 618 619
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
620 621
    else:
        if in_dygraph_mode():
622 623 624
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
625 626 627 628 629 630 631
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
632

633
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
634
    if is_compiled_with_npu():
635 636 637 638 639
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

640 641
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
642
        use_cudnn = False
643

L
LielinJiang 已提交
644 645 646
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
647 648


649
def conv1d_transpose(x,
650 651 652 653 654 655 656 657 658 659
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
660
    r"""
661 662 663 664 665 666 667 668 669 670 671 672 673 674
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
675
        Out = \sigma (W \ast X + b)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
711
          and :math:`L^\prime_{out} + stride`.
712 713 714 715 716 717 718 719 720

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
721
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
722 723 724 725 726 727 728
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
729
             If it is a list/tuple, it must contain one integer. Default: 0.
730 731 732 733 734 735 736
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
737
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
738 739
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
740
            tuple/list, it must contain one integer, `(feature_length)`. None if use
741
            filter_size(shape of weight), padding, and stride to calculate output_size.
742
        data_format (str, optional): Specify the data format of the input, and the data format of the output
743 744 745
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
746 747
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
764

765 766 767 768
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
769
          w=np.array([[[7, 0]],
770 771 772
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
773
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
774
          print(y_var)
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
791 792 793 794
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
795 796 797

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
798
        raise ValueError("The channel dimension of the input({}) "
799 800
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
801 802
    if groups <= 0:
        raise ValueError(
803 804
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
820
            "The size of padding's dimension should 1 or 2. But got padding={}".
821 822
            format(padding))

823 824
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
825 826 827 828

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
829 830 831 832
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
833
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
834 835 836 837 838 839 840
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
841 842
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
843 844 845 846

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
847 848
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
849 850 851

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
852 853
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
854 855 856 857 858 859
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

860 861
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
862

863 864 865 866 867 868 869 870
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
871 872 873 874
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
875
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
876 877 878 879 880
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
881
            'output_padding': output_padding,
882 883 884 885 886 887 888 889 890 891 892 893
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
894
        dtype = helper.input_dtype(input_param_name='x')
895 896
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
897 898 899 900
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
901 902 903
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

904
    out = squeeze(out, axis=[squeeze_axis])
905 906 907
    return out


908
def conv2d_transpose(x,
909 910 911
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
912 913 914
                     padding=0,
                     output_padding=0,
                     dilation=1,
915
                     groups=1,
L
LielinJiang 已提交
916
                     output_size=None,
917
                     data_format='NCHW',
918
                     name=None):
919
    r"""
S
swtkiwi 已提交
920

921 922 923 924 925 926 927 928 929 930 931
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
932
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
933 934 935

    For each input :math:`X`, the equation is:

936
    ..  math::
937

938
        Out = \sigma (W \ast X + b)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

963
        ..  math::
964 965 966 967 968 969 970

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
971 972
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
973
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
974 975 976
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
977
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
978 979

    Args:
L
LielinJiang 已提交
980
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
981
            whose data type is float32 or float64.
L
LielinJiang 已提交
982
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
983 984
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
985
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
986 987
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
988
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
989 990
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
991
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
992
            it could be in three forms: `[pad_height, pad_width]` or
993
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
994
            and when `data_format` is `"NCHW"`, `padding` can be in the form
995
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
996
            when `data_format` is `"NHWC"`, `padding` can be in the form
997 998
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
999 1000
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1001
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1002 1003 1004 1005 1006
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1007 1008
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1009
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1010
        output_size(int|tuple|list, optional): The output image size. If output size is a
1011
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1012
            filter_size(shape of weight), padding, and stride to calculate output_size.
1013
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1014 1015 1016
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1017 1018
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1019 1020 1021
           None by default.

    Returns:
1022
        A Tensor representing the conv2d_transpose, whose
1023 1024
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1025
        transposed convolution result.
1026 1027 1028 1029

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1030 1031
          import paddle
          import paddle.nn.functional as F
1032

1033 1034
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1035

1036
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1037
          y_np = y_var.numpy()
1038

1039
          print(y_np.shape)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1050 1051 1052 1053
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1054
    num_channels = x.shape[channel_dim]
1055
    if num_channels < 0:
1056
        raise ValueError("The channel dimension of the input({}) "
1057
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1058
                             x.shape, num_channels))
1059 1060
    if groups <= 0:
        raise ValueError(
1061 1062
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1063 1064 1065 1066
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1067 1068 1069 1070
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1071 1072
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1073 1074 1075

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1076 1077
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1078

1079 1080 1081
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1082 1083 1084
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
1085 1086 1087 1088 1089 1090
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1091
            output_size = convert_to_list(output_size, 2, 'output_size')
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        elif isinstance(output_size, Variable):
            check_dtype(output_size.dtype, 'output_size', ['int32', 'int64'],
                        'conv2d_transpose')
            if len(output_size.shape) == 1 and (output_size.shape[0] == 1
                                                or output_size.shape[0] == 2):
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
L
LielinJiang 已提交
1102 1103
        else:
            raise ValueError(
1104 1105
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1106 1107 1108 1109

    if output_padding == 0:
        output_padding = []
    else:
1110
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1111 1112 1113

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1114
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1115
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1116
        use_cudnn = False
1117

F
From00 已提交
1118
    if in_dygraph_mode():
1119 1120 1121
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1122 1123 1124 1125 1126 1127
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1128 1129 1130 1131
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1132
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1133
        if bias is not None:
L
LielinJiang 已提交
1134
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1135
        else:
L
LielinJiang 已提交
1136
            out = pre_bias
1137
    else:
L
LielinJiang 已提交
1138
        inputs = {'Input': [x], 'Filter': [weight]}
1139
        attrs = {
L
LielinJiang 已提交
1140
            'output_padding': output_padding,
1141 1142 1143 1144 1145 1146 1147 1148 1149
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1150
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1151 1152
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1153
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1154
        outputs = {"Output": [pre_bias]}
1155 1156 1157 1158
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1159

1160
        if bias is not None:
L
LielinJiang 已提交
1161
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1162
        else:
L
LielinJiang 已提交
1163 1164
            out = pre_bias

1165 1166 1167
    return out


1168
def conv3d(x,
1169 1170 1171
           weight,
           bias=None,
           stride=1,
1172
           padding=0,
1173 1174 1175 1176
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1177
    r"""
S
swtkiwi 已提交
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1190
    ..  math::
1191

1192
        Out = \sigma (W \ast X + b)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1216
        ..  math::
1217 1218 1219 1220 1221 1222

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1223
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1224
            type of input is float16 or float32 or float64.
1225
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1226 1227
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1228
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1229 1230
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1231
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1232
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1233 1234 1235 1236
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1237
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1238
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1239
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1240 1241
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1242
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1243
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1244
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1245
            Default: dilation = 1.
1246
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1247 1248 1249 1250
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1251
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1252 1253 1254
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1255 1256
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1257 1258 1259
           None by default.

    Returns:
1260 1261 1262
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1263 1264 1265 1266 1267
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1268 1269
            import paddle
            import paddle.nn.functional as F
1270

1271 1272
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1273

1274 1275
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1276

1277
            print(y_np.shape)
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1288 1289 1290 1291
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1292
    num_channels = x.shape[channel_dim]
1293 1294 1295
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1296
            "The channel dimension of the input({}) should be defined. "
1297
            "Received: {}.".format(x.shape, num_channels))
1298 1299
    if groups <= 0:
        raise ValueError(
1300 1301
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1302 1303 1304
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1305 1306
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1307 1308 1309
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1310 1311
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1312

1313
    cudnn_version = get_cudnn_version()
1314 1315
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1316

1317
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1318 1319
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1320 1321
    op_type = "conv3d"

L
LielinJiang 已提交
1322 1323 1324
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1325 1326


1327
def conv3d_transpose(x,
1328 1329 1330
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1331 1332
                     padding=0,
                     output_padding=0,
1333
                     groups=1,
L
LielinJiang 已提交
1334 1335
                     dilation=1,
                     output_size=None,
1336
                     data_format='NCDHW',
1337
                     name=None):
1338
    r"""
L
LielinJiang 已提交
1339
    The convolution3d transpose layer calculates the output based on the input,
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1350
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1351 1352 1353

    For each input :math:`X`, the equation is:

1354
    ..  math::
1355

1356
        Out = \sigma (W \ast X + b)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1381
        ..  math::
1382 1383 1384 1385 1386 1387 1388 1389 1390

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1391 1392
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1393 1394
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1395 1396 1397 1398
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1399
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1400 1401

    Args:
1402
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1403
            of input is float32 or float64.
L
LielinJiang 已提交
1404
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1405 1406
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1407
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1408 1409 1410
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1411
            Default: stride = 1.
1412
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1413 1414 1415
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1416
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1417
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1418
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1419
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1420 1421
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1422 1423
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1424
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1425 1426 1427 1428 1429
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1430 1431 1432
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1433
            Default: dilation = 1.
L
LielinJiang 已提交
1434
        output_size(int|list|tuple, optional): The output image size. If output size is a
1435
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1436
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1437
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1438 1439 1440
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1441 1442
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1443 1444 1445
           None by default.

    Returns:
1446
        A Tensor representing the conv3d_transpose, whose data
1447 1448 1449
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1450 1451 1452 1453
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1454

L
LielinJiang 已提交
1455
          import paddle
1456 1457
          import paddle.nn.functional as F

1458 1459
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1460

1461
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1462
          y_np = y_var.numpy()
1463

1464
          print(y_np.shape)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1475 1476 1477 1478
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1479
    num_channels = x.shape[channel_dim]
1480 1481 1482
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1483
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1484
            "Received: {}.".format(x.shape, num_channels))
1485 1486
    if groups <= 0:
        raise ValueError(
1487 1488
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1489 1490 1491
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1492 1493
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1494 1495

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1496 1497
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1498 1499 1500
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1501 1502 1503 1504
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1505
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1506 1507 1508 1509 1510 1511 1512
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1513
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1514 1515 1516 1517

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1518 1519
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1520 1521 1522 1523

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1524
    if in_dygraph_mode():
1525 1526 1527 1528
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1529 1530 1531 1532 1533 1534
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1535 1536 1537 1538
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1539
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1540
        if bias is not None:
L
LielinJiang 已提交
1541
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1542
        else:
L
LielinJiang 已提交
1543
            out = pre_bias
1544
    else:
L
LielinJiang 已提交
1545
        inputs = {'Input': [x], 'Filter': [weight]}
1546
        attrs = {
L
LielinJiang 已提交
1547
            'output_padding': output_padding,
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1558 1559
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1560

L
LielinJiang 已提交
1561
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1562 1563
        outputs = {"Output": [pre_bias]}

1564 1565 1566 1567
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1568
        if bias is not None:
L
LielinJiang 已提交
1569
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1570
        else:
L
LielinJiang 已提交
1571
            out = pre_bias
1572 1573

    return out