test_reshape_op.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15 16 17
import unittest
import numpy as np

18
from op_test import OpTest, convert_float_to_uint16
19
import paddle
20
import paddle.fluid as fluid
J
joejiong 已提交
21 22
from paddle.fluid import compiler
from paddle.static import Program, program_guard
23
import paddle.fluid.core as core
Y
Yibing Liu 已提交
24

C
caoying03 已提交
25

26
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
27
class TestReshapeOp(OpTest):
28

C
caoying03 已提交
29
    def setUp(self):
30 31 32 33 34 35 36 37
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
38

39
    def init_data(self):
Z
zhupengyang 已提交
40 41 42
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
43 44

    def test_check_output(self):
45
        self.check_output(no_check_set=['XShape'])
46 47 48

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
49 50 51


class TestReshapeBF16Op(OpTest):
52

53 54 55 56 57 58 59 60 61
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
62 63 64 65
            "Out":
            convert_float_to_uint16(out),
            'XShape':
            convert_float_to_uint16(
66 67 68 69 70 71 72 73 74 75 76 77 78
                np.random.random(self.ori_shape).astype("float32"))
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
79 80


81
class TestReshapeOpDimInfer1(TestReshapeOp):
82

83
    def init_data(self):
Z
zhupengyang 已提交
84
        self.ori_shape = (5, 25)
85 86
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
87 88


89
class TestReshapeOpDimInfer2(TestReshapeOp):
90

91
    def init_data(self):
Z
zhupengyang 已提交
92 93 94
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
95

C
caoying03 已提交
96

97
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
98
class TestReshapeOpWithInputShape(OpTest):
99

100
    def setUp(self):
101
        self.init_data()
102
        self.op_type = "reshape2"
103

104
        self.inputs = {
105
            "X": np.random.random(self.ori_shape).astype("float32"),
106
            "Shape": np.array(self.actual_shape, dtype="int32")
107
        }
108
        self.attrs = {"shape": self.new_shape}
109
        self.outputs = {
110 111
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
112
        }
113

114
    def init_data(self):
Z
zhupengyang 已提交
115 116 117
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
118

119
    def test_check_output(self):
120
        self.check_output(no_check_set=['XShape'])
121

G
guosheng 已提交
122
    def test_check_grad(self):
C
chengduo 已提交
123
        self.check_grad(["X"], "Out")
124 125


126 127
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
128

129 130 131 132 133 134 135 136 137 138 139 140 141
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
142 143 144 145 146 147 148
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
149 150 151
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
152 153 154 155 156 157 158 159 160 161
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
162

163
    def init_data(self):
Z
zhupengyang 已提交
164 165 166
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
167 168 169 170
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
171

172
    def init_data(self):
Z
zhupengyang 已提交
173 174 175 176
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
177 178 179 180


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
181

182 183 184 185 186 187
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
188
            "Shape": np.array(self.new_shape, dtype="int32")
189
        }
190 191 192 193 194 195 196
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
197 198 199
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
200 201 202 203 204 205 206 207

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


208
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
209

210
    def init_data(self):
Z
zhupengyang 已提交
211 212 213
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
214
        self.shape = (5, -1, -1)
215 216


217
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
218

219
    def init_data(self):
Z
zhupengyang 已提交
220 221 222 223
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
224 225


226 227
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
250 251 252
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
253 254

    def test_check_output(self):
255 256 257
        self.check_output_with_place(fluid.core.CPUPlace(),
                                     atol=1e-5,
                                     no_check_set=['XShape'])
258 259 260 261 262 263 264

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
265

266 267 268 269
    def init_dtype(self):
        self.dtype = np.uint8


270
class TestReshapeOpBool(TestReshapeOp):
271

272 273 274 275
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
276
            "X": np.random.choice([True, False], size=self.ori_shape)
277 278 279 280 281 282 283 284 285 286 287
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


288
# Test python API
289
class TestReshapeAPI(unittest.TestCase):
290

291
    def _set_paddle_api(self):
292
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
293
        self.data = paddle.static.data
294
        self.to_tensor = paddle.to_tensor
295 296 297 298
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
299 300 301

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
302
        self.data = paddle.static.data
303 304 305
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
306
        paddle.enable_static()
307 308
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
309 310 311 312
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
313

314
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
315

316 317
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
318

319
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
320 321 322
            out_2 = fluid.layers.reshape(x,
                                         shape=shape,
                                         actual_shape=actual_shape)
323

324 325
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
326

327 328
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
329

J
joejiong 已提交
330
        exe = paddle.static.Executor(place=paddle.CPUPlace())
331
        res_1, res_2, res_3, res_4 = exe.run(
332
            main_prog,
333 334 335 336
            feed={
                "x": input,
                "shape": np.array([2, 5, 5]).astype("int32")
            },
337 338 339 340 341 342
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

371

372
class TestStaticReshape_(TestReshapeAPI):
373

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


397
# Test Input Error
398
class TestReshapeOpError(unittest.TestCase):
399

400
    def _set_paddle_api(self):
J
joejiong 已提交
401
        self.data = paddle.static.data
402 403 404 405 406 407 408
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
409 410 411
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
412 413
                x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                             paddle.CPUPlace())
414
                self.reshape(x1, shape=[1])
415 416 417

            self.assertRaises(TypeError, test_x_type)

418
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
419
            def test_x_dtype():
420
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
421
                self.reshape(x2, shape=[2, 5, 5])
422 423 424

            self.assertRaises(TypeError, test_x_dtype)

425
            def test_x_dtype_float16():
426 427 428
                x_float16 = self.data(name="x_float16",
                                      shape=[2, 25],
                                      dtype="float16")
429
                self.reshape(x_float16, shape=[2, 5, 5])
430 431 432

            test_x_dtype_float16()

433
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
434 435 436

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
437
                self.reshape(x3, shape=1)
438 439 440 441 442

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
443
                self.reshape(x3, shape=[25, 2], actual_shape=1)
444 445 446 447 448

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
449
                self.reshape(x3, shape=[-1, -1, 5])
450 451 452 453 454

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
455
                self.reshape(x3, [2, 5, 5, 0])
456 457 458

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
459
            # The argument shape have more than one negative value.
460
            def test_shape_3():
461
                self.reshape(x3, [-1, -2, 5])
462 463 464

            self.assertRaises(AssertionError, test_shape_3)

465 466 467 468 469 470 471 472
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

473

474
class TestDygraphReshapeAPI(unittest.TestCase):
475

476 477 478 479 480 481
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
482 483 484 485
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
486
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
487 488
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
489
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
490 491 492 493 494

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
495
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
496 497
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
498
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
499 500 501 502 503

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
504
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
505 506
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
507
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
508 509


510
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
511

512 513 514 515
    def executed_api(self):
        self.reshape = paddle.reshape_


516
class TestReshapeZeroTensor(unittest.TestCase):
517

518 519
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
520
        # since we use "0" as the dimension copy semantically in reshape,
521 522 523 524 525 526 527 528 529 530
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


Y
ying 已提交
531
if __name__ == "__main__":
H
hong 已提交
532
    paddle.enable_static()
Y
Yibing Liu 已提交
533
    unittest.main()