test_parallel_dygraph_dataparallel.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
17
import paddle
18
import paddle.fluid as fluid
19 20 21
import copy
import os
import subprocess
22

R
Roc 已提交
23
from paddle.distributed.utils.launch_utils import find_free_ports, watch_local_trainers, get_cluster, TrainerProc
24
from paddle.fluid.framework import _test_eager_guard
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


def get_cluster_from_args(selected_gpus):
    cluster_node_ips = '127.0.0.1'
    node_ip = '127.0.0.1'

    node_ips = [x.strip() for x in cluster_node_ips.split(',')]

    node_ips.index(node_ip)

    free_ports = None

    free_ports = find_free_ports(len(selected_gpus))
    if free_ports is not None:
        free_ports = list(free_ports)

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


S
ShenLiang 已提交
47 48 49 50 51
def get_gpus(selected_gpus):
    selected_gpus = [x.strip() for x in selected_gpus.split(',')]
    return selected_gpus


X
xiongkun 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
def start_local_trainers_cpu(trainer_endpoints,
                             training_script,
                             training_script_args,
                             log_dir=None):
    current_env = copy.copy(os.environ.copy())
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    n_rank = len(trainer_endpoints)
    print(trainer_endpoints)
    for rank_id, endpoint in enumerate(trainer_endpoints):
        proc_env = {
            "PADDLE_DISTRI_BACKEND": "gloo",
            "PADDLE_TRAINER_ID": "%d" % rank_id,
            "PADDLE_CURRENT_ENDPOINT": "%s" % endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % n_rank,
            "PADDLE_TRAINER_ENDPOINTS": ",".join(trainer_endpoints)
        }

        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        assert os.getenv('WITH_COVERAGE',
                         'OFF') == 'OFF', "Gloo don't support WITH_COVERAGE."
        cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = rank_id
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


97 98 99 100
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
101
                         eager_mode=True,
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for t in pod.trainers:
        proc_env = {
            "FLAGS_selected_gpus": "%s" % ",".join([str(g) for g in t.gpus]),
            "PADDLE_TRAINER_ID": "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }

121 122 123
        if not eager_mode:
            proc_env["FLAGS_enable_eager_mode"] = "%d" % 0

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        current_env.update(proc_env)

        print("trainer proc env:{}".format(current_env))

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            cmd = "python -m coverage run --branch -p " + training_script
        else:
            cmd = "python -u " + training_script

        print("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None

        proc = subprocess.Popen(cmd.split(" "), env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.log_fn = fn
        tp.cmd = cmd

        procs.append(tp)

    return procs


150
class TestMultipleGpus(unittest.TestCase):
151

152
    def run_mnist_2gpu(self, target_file_name, eager_mode=True):
153 154 155 156 157 158 159 160 161 162
        if not fluid.core.is_compiled_with_cuda(
        ) or fluid.core.get_cuda_device_count() == 0:
            return

        selected_gpus = get_gpus('0,1')
        cluster = None
        pod = None

        cluster, pod = get_cluster_from_args(selected_gpus)

163 164 165 166 167
        procs = start_local_trainers(cluster,
                                     pod,
                                     eager_mode=eager_mode,
                                     training_script=target_file_name,
                                     training_script_args=[])
168

X
xiongkun 已提交
169 170 171 172 173 174 175 176 177 178
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_endpoints())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)


class TestMultipleWithGloo(unittest.TestCase):
179

X
xiongkun 已提交
180 181 182 183 184
    def run_mnist_2cpu(self, target_file_name):

        cluster, pod = get_cluster_from_args(
            [0, 1])  #tmp use. for getting trainer_nranks()

185 186 187
        procs = start_local_trainers_cpu(cluster.trainers_endpoints(),
                                         training_script=target_file_name,
                                         training_script_args=[])
X
xiongkun 已提交
188

189 190 191 192 193 194 195 196
        while True:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)

J
JZ-LIANG 已提交
197 198

class TestDataParallelGradientCheck(TestMultipleGpus):
199

200
    def test_multiple_gpus_dynamic(self):
201 202
        self.run_mnist_2gpu('parallel_dygraph_gradient_check.py',
                            eager_mode=False)
203 204


205
class TestDataParallelWithPyLayer(TestMultipleGpus):
206

207 208
    def test_parallel_dygraph_dataparallel_with_pylayer(self):
        self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py')
209 210
        self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py',
                            eager_mode=False)
211 212


213
class TestGradientCheckInEagerMode(TestMultipleGpus):
214

215 216 217 218
    def test_multiple_gpus_dynamic(self):
        self.run_mnist_2gpu('parallel_dygraph_gradient_check_in_eager_mode.py')


219
if __name__ == "__main__":
220
    os.environ["FLAGS_enable_eager_mode"] = "1"
221
    unittest.main()