test_momentum_op.py 37.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sidgoyal78 已提交
15 16
import unittest
import numpy as np
17 18
import paddle.fluid.core as core
from paddle.fluid.op import Operator
19
from op_test import OpTest
J
Jiawei Wang 已提交
20 21
import paddle
import paddle.fluid as fluid
22
import numpy
23
from paddle.fluid.framework import _test_eager_guard
S
sidgoyal78 已提交
24 25


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def calculate_momentum_by_numpy(param,
                                grad,
                                mu,
                                velocity,
                                use_nesterov,
                                learning_rate,
                                regularization_method=None,
                                regularization_coeff=1.0):
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - grad * learning_rate - \
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


K
kavyasrinet 已提交
53
class TestMomentumOp1(OpTest):
54

S
sidgoyal78 已提交
55 56
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
57 58
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
59

W
Wu Yi 已提交
60 61 62
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
63
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
64
        mu = 0.0001
K
kavyasrinet 已提交
65
        use_nesterov = False
S
sidgoyal78 已提交
66 67 68 69 70 71 72 73 74 75

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {'mu': mu}

76 77 78 79 80 81 82
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)
K
kavyasrinet 已提交
83 84 85

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
86 87 88
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
89 90 91 92
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
93
class TestMomentumOpFp16(TestMomentumOp1):
94

W
Wu Yi 已提交
95 96 97 98 99 100 101
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
102
class TestMomentumOp2(OpTest):
103
    '''Test Momentum with default values for attributes
K
kavyasrinet 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    '''

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

123
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
124

125 126 127 128 129 130 131
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)
S
sidgoyal78 已提交
132 133 134 135 136 137 138

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


139 140 141
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestLarsMomentumOpWithMP(OpTest):
142

143
    def setUp(self):
L
limingshu 已提交
144
        self.config()
145 146 147 148 149 150
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

L
limingshu 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        params = []
        grads = []
        velocitys = []
        learning_rates = []
        master_params = []
        param_outs = []
        velocity_outs = []
        master_param_outs = []
        for i in range(self.params_num):
            master_param = np.random.random((123, 321)).astype("float32")
            param = master_param.astype("float16")
            grad = np.random.random((123, 321)).astype("float16")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")

            fp32_grad = grad.astype("float32")
            pnorm = np.sqrt(np.square(master_param).sum())
            gnorm = np.sqrt(np.square(fp32_grad).sum())
            local_lr = learning_rate * lars_coeff * pnorm / (
                gnorm + lars_weight_decay * pnorm)
            fp32_grad = fp32_grad * rescale_grad
            velocity_out = mu * velocity + local_lr * (
                fp32_grad + lars_weight_decay * master_param)
            p_new = master_param - velocity_out
            param_out = p_new.astype("float16")
            master_param_out = p_new

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))
            master_params.append(("SubMasterParam_" + str(i), master_param))
            master_param_outs.append(
                ("SubMasterParamOut_" + str(i), master_param_out))

188
        self.inputs = {
L
limingshu 已提交
189 190 191 192 193
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates,
            'MasterParam': master_params,
194 195 196 197 198
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
199
            'lars_weight_decay': [lars_weight_decay],
200 201 202 203 204
            'multi_precision': True,
            'rescale_grad': rescale_grad
        }

        self.outputs = {
L
limingshu 已提交
205 206 207
            'ParamOut': param_outs,
            'VelocityOut': velocity_outs,
            'MasterParamOut': master_param_outs
208 209 210 211 212 213 214 215 216
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place)

L
limingshu 已提交
217 218 219
    def config(self):
        self.params_num = 1

220

221
class TestLarsMomentumOp(OpTest):
222

223
    def setUp(self):
L
limingshu 已提交
224
        self.config()
225 226 227 228 229
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

L
limingshu 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        params = []
        grads = []
        velocitys = []
        param_outs = []
        velocity_outs = []
        learning_rates = []
        for i in range(self.params_num):
            param = np.random.random((123, 321)).astype("float32")
            grad = np.random.random((123, 321)).astype("float32")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")
            pnorm = np.sqrt(np.square(param).sum())
            gnorm = np.sqrt(np.square(grad).sum())
            local_lr = learning_rate * lars_coeff * pnorm / (
                gnorm + lars_weight_decay * param)
245 246
            velocity_out = mu * velocity + local_lr * (
                grad + lars_weight_decay * param)
L
limingshu 已提交
247 248 249 250 251 252 253 254 255
            param_out = param - velocity_out

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))

256
        self.inputs = {
L
limingshu 已提交
257 258 259 260
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates
261 262 263 264 265
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
266
            'lars_weight_decay': [lars_weight_decay]
267
        }
L
limingshu 已提交
268
        self.outputs = {'ParamOut': param_outs, 'VelocityOut': velocity_outs}
269 270

    def test_check_output(self):
271
        paddle.enable_static()
272 273
        self.check_output()

L
limingshu 已提交
274 275 276
    def config(self):
        self.params_num = 1

277

278
class TestSparseMomentumOp(unittest.TestCase):
279

280 281
    def setUp(self):
        self.use_nesterov = False
282 283
        self.regularization_method = ""
        self.regularization_coeff = 1.0
284 285 286 287 288 289 290 291 292 293

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
294 295
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
314 315 316 317 318
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
319
                                        0.0).astype("float32")
D
dzhwinter 已提交
320
        velocity_out.set(velocity_out_np_array, place)
321

322
        # create and initialize LearningRate Variable
323 324 325 326 327
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
328 329 330 331 332 333 334 335 336 337 338
        op = Operator("momentum",
                      Param='Param',
                      Grad='Grad',
                      Velocity='Velocity',
                      ParamOut='ParamOut',
                      VelocityOut='VelocityOut',
                      LearningRate='LearningRate',
                      mu=mu,
                      use_nesterov=use_nesterov,
                      regularization_method=regularization_method,
                      regularization_coeff=regularization_coeff)
339 340 341 342
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
343
        velocity_out_np_array = np.array(velocity_out)
344 345 346

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
347 348 349
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
350

D
dzhwinter 已提交
351
        _param = param_array
352 353 354 355 356 357 358 359 360 361 362

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff)

363
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
364
        self.assertTrue((_param_out == param_out_np_array).all())
365 366 367 368 369 370 371 372 373 374 375 376 377

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
378

379 380 381 382
    def init_kernel(self):
        self.use_nesterov = True


383
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
                                        0.0).astype("float32")
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        op = Operator("momentum",
                      Param='Param',
                      Grad='Grad',
                      Velocity='Velocity',
                      MasterParam='MasterParam',
                      ParamOut='ParamOut',
                      VelocityOut='VelocityOut',
                      MasterParamOut='MasterParamOut',
                      LearningRate='LearningRate',
                      mu=mu,
                      use_nesterov=use_nesterov,
                      regularization_method=regularization_method,
                      regularization_coeff=regularization_coeff,
                      multi_precision=True,
                      rescale_grad=1.0)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff)

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
        TestSparseMomentumOpWithMultiPrecision):
488

489 490 491 492
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
493
class TestMomentumV2(unittest.TestCase):
494

J
Jiawei Wang 已提交
495 496 497 498 499 500
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
501 502 503
        adam = paddle.optimizer.Momentum(learning_rate=0.01,
                                         momentum=0.9,
                                         parameters=linear.parameters())
J
Jiawei Wang 已提交
504 505 506 507 508 509
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
510
        paddle.enable_static()
J
Jiawei Wang 已提交
511 512 513 514 515 516 517
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
518
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
519

520 521
            rms_optimizer = paddle.optimizer.Momentum(learning_rate=0.1,
                                                      momentum=0.9)
J
Jiawei Wang 已提交
522 523 524
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
525 526
            train_reader = paddle.batch(paddle.dataset.uci_housing.train(),
                                        batch_size=1)
J
Jiawei Wang 已提交
527 528 529 530 531 532 533
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
534 535 536
        self.assertRaises(ValueError,
                          paddle.optimizer.Momentum,
                          learning_rate=None)
J
Jiawei Wang 已提交
537 538
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)

539 540 541 542 543
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_momentum_dygraph()
            self.test_raise_error()

J
Jiawei Wang 已提交
544

545
class TestMomentumOpWithDecay(OpTest):
546

547 548 549 550 551 552 553 554 555 556 557
    def setUp(self):
        self.op_type = "momentum"
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
558
        learning_rate = np.array([0.001]).astype(np.float32)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
            'regularization_coeff': regularization_coeff
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
599

600 601 602 603 604 605 606 607 608
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
609

610 611 612 613 614
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
615

616 617 618 619 620 621 622
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
623

624 625 626 627 628
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
            regularization=regularization)
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
659
            avg_cost = paddle.mean(cost)
660 661 662 663 664 665

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9)
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
666 667
            train_reader = paddle.batch(paddle.dataset.uci_housing.train(),
                                        batch_size=1)
668 669 670 671 672 673 674
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


675
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
676

677 678 679
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
680 681
        with paddle.static.program_guard(main_program=main_program,
                                         startup_program=startup_program):
682
            x = paddle.static.data(name='x', shape=[10, 10])
683 684 685 686
            linear = paddle.nn.Linear(10,
                                      10,
                                      weight_attr=weight_attr,
                                      bias_attr=bias_attr)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
                weight_decay=paddle.regularizer.L2Decay(0.5))
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
            regularizer=paddle.regularizer.L2Decay(0.1))
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
            regularizer=paddle.regularizer.L1Decay(0.1))
        bias_attr = paddle.ParamAttr(
            name="bias",
            initializer=paddle.nn.initializer.Constant(value=0.),
            regularizer=None)
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
729
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
            self.assertEqual(ops[-2].attr('regularization_coeff'),
                             np.float32(0.5))

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


749
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
750

751 752
    def __update_params(self, momentum, linear):
        for i in range(10):
753 754
            inp = paddle.full(shape=[2, 2], fill_value=i,
                              dtype='float32').astype("float32")
755 756 757 758 759
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
760
            linear.clear_gradients()
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
            bias_attr=paddle.nn.initializer.Constant(value=2.0))
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
            bias_attr=paddle.nn.initializer.Constant(value=2.0))
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
            'the param weight updated by two Momentum optimizers should equal')

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


805
class TestMomentumV2Group(TestMomentumV2):
806

807 808 809 810 811 812 813
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        adam = paddle.optimizer.Momentum(learning_rate=0.01,
                                         parameters=[{
                                             'params':
                                             linear_1.parameters()
                                         }, {
                                             'params':
                                             linear_2.parameters(),
                                             'weight_decay':
                                             0.001,
                                             'learning_rate':
                                             0.1,
                                             'momentum':
                                             0.99
                                         }],
                                         weight_decay=0.1,
                                         momentum=0.9)
830 831 832 833 834 835 836
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


837
class TestMultiTensorMomentumDygraph(unittest.TestCase):
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    def _momentum_optimize_dygraph(self,
                                   place,
                                   use_param_attr=False,
                                   use_param_group=False,
                                   use_amp=False,
                                   use_multi_tensor=False):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)
        input = paddle.randn((5, 5))
        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
            trainable=True)
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)
        if not use_param_group:
            optimizer = paddle.optimizer.Momentum(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp)
        else:
            optimizer = paddle.optimizer.Momentum(
                parameters=[{
                    'params': model.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'momentum': 0.99
                }],
                use_multi_tensor=use_multi_tensor,
                multi_precision=use_amp)
        for idx in range(5):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad(set_to_zero=False)
            else:
                output = model(input)
                loss = paddle.mean(output)
                # This can be any optimizer supported by dygraph.
                loss.backward()
                optimizer.step()
                optimizer.clear_grad(set_to_zero=False)
        return output, model.parameters()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=True)
        output2, params2 = self._momentum_optimize_dygraph(
            place=place, use_amp=use_amp, use_multi_tensor=False)
H
hong 已提交
904

905
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
906
        for idx in range(len(params1)):
907
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
908 909 910 911 912 913 914 915 916 917 918 919

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=True)
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
            use_multi_tensor=False)
920
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
921
        for idx in range(len(params1)):
922
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
923 924 925 926 927 928 929 930 931 932 933 934

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=True)
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
            use_multi_tensor=False)
935
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
936
        for idx in range(len(params1)):
937
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
938 939 940 941 942 943 944 945 946

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)

947 948 949 950
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_main()

951 952

class TestMultiTensorMomentumStatic(unittest.TestCase):
953

954 955 956 957 958 959 960 961 962 963 964 965
    def _momentum_optimize_static(self,
                                  place,
                                  use_amp=False,
                                  use_multi_tensor=False):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
966 967
        optimizer = paddle.optimizer.Momentum(multi_precision=use_amp,
                                              use_multi_tensor=use_multi_tensor)
968 969 970 971 972 973 974 975 976
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
                use_fp16_guard=False)
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
977 978 979
                data = paddle.static.data(shape=[2, 2],
                                          name='X',
                                          dtype='float16')
980
            else:
981 982 983
                data = paddle.static.data(shape=[2, 2],
                                          name='X',
                                          dtype='float32')
984
            hidden = paddle.static.nn.fc(x=data, size=10)
985
            loss = paddle.mean(hidden)
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = numpy.random.random(size=(2, 2)).astype('float16')
        else:
            x = numpy.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
            loss_data, = exe.run(train_program,
                                 feed={"X": x},
                                 fetch_list=[loss.name])
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
1008 1009 1010 1011 1012 1013
        output1 = self._momentum_optimize_static(place=place,
                                                 use_amp=use_amp,
                                                 use_multi_tensor=True)
        output2 = self._momentum_optimize_static(place=place,
                                                 use_amp=use_amp,
                                                 use_multi_tensor=False)
1014
        for idx in range(len(output1)):
1015
            np.testing.assert_allclose(output1[idx], output2[idx], rtol=1e-05)
1016 1017 1018 1019 1020 1021 1022 1023

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)


S
sidgoyal78 已提交
1024
if __name__ == "__main__":
H
hong 已提交
1025
    paddle.enable_static()
S
sidgoyal78 已提交
1026
    unittest.main()