test_matmul_v2_op.py 21.5 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17 18
from op_test import OpTest, convert_float_to_uint16, get_numeric_gradient
from paddle.fluid.tests.unittests.testsuite import create_op
S
ShenLiang 已提交
19 20 21 22 23
import paddle.fluid.core as core

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
24
from paddle.fluid.framework import _test_eager_guard
S
ShenLiang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, ))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((Y.size, ))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float64")
    return Out


class TestMatMulV2Op(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
68 69

    def init_kernel_type(self):
70
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
S
ShenLiang 已提交
71 72

    def setUp(self):
S
ShenLiang 已提交
73
        self.init_kernel_type()
S
ShenLiang 已提交
74 75
        self.config()
        self.op_type = "matmul_v2"
76 77 78 79 80 81 82 83 84
        if self.is_bfloat16_op():
            x = np.random.random(self.x_shape).astype(np.float32)
            y = np.random.random(self.y_shape).astype(np.float32)
        else:
            x = np.random.random(self.x_shape).astype(self.dtype)
            y = np.random.random(self.y_shape).astype(self.dtype)
            # -0.1 ~ 0.1
            x = -0.1 + 0.2 * x
            y = -0.1 + 0.2 * y
S
ShenLiang 已提交
85
        result = reference_matmul(x, y, self.trans_x, self.trans_y)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        if self.is_bfloat16_op():
            result = result.astype(np.float32)
            self.inputs = {
                'X': convert_float_to_uint16(x),
                'Y': convert_float_to_uint16(y),
            }
            self.inputs_fp32 = {
                'X': x,
                'Y': y,
            }
        else:
            result = result.astype(self.dtype)
            self.inputs = {
                'X': x,
                'Y': y,
            }
S
ShenLiang 已提交
102 103 104 105
        self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y}
        self.outputs = {'Out': result}

    def test_check_output(self):
106
        self.check_output(check_eager=False)
S
ShenLiang 已提交
107 108

    def test_check_grad(self):
109
        if core.is_compiled_with_rocm():
110 111 112 113
            self.check_grad(['X', 'Y'],
                            'Out',
                            max_relative_error=1e-2,
                            check_eager=False)
114
        else:
115
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
S
ShenLiang 已提交
116 117


118
class TestMatMulOp2(TestMatMulV2Op):
S
ShenLiang 已提交
119 120 121 122 123 124 125 126 127 128 129
    """
    case 2
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 3, 2, 100)
        self.trans_x = False
        self.trans_y = True


130
class TestMatMulOp3(TestMatMulV2Op):
S
ShenLiang 已提交
131 132 133 134 135 136 137 138 139 140 141
    """
    case 3
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


142
class TestMatMulOp4(TestMatMulV2Op):
S
ShenLiang 已提交
143 144 145 146 147 148 149 150 151 152 153
    """
    case 4
    """

    def config(self):
        self.x_shape = (100, )
        self.y_shape = (1, 2, 100, 2)
        self.trans_x = False
        self.trans_y = False


154
class TestMatMulOp5(TestMatMulV2Op):
S
ShenLiang 已提交
155 156 157 158 159
    """
    case 5
    """

    def config(self):
S
ShenLiang 已提交
160
        self.x_shape = (1, 1, 100, 1)
S
ShenLiang 已提交
161 162 163 164 165
        self.y_shape = (100, )
        self.trans_x = True
        self.trans_y = False


166
class TestMatMulOp6(TestMatMulV2Op):
S
ShenLiang 已提交
167 168 169 170 171
    """
    case 6
    """

    def config(self):
172 173
        self.x_shape = (1, 2, 102, 1)
        self.y_shape = (102, )
S
ShenLiang 已提交
174 175 176 177
        self.trans_x = True
        self.trans_y = False


178
class TestMatMulOp7(TestMatMulV2Op):
S
ShenLiang 已提交
179 180 181 182 183 184 185 186 187 188 189
    """
    case 7
    """

    def config(self):
        self.x_shape = (1, 2, 1, 100)
        self.y_shape = (100, )
        self.trans_x = False
        self.trans_y = False


190
class TestMatMulOp8(TestMatMulV2Op):
S
ShenLiang 已提交
191 192 193 194 195 196 197 198 199 200 201
    """
    case 8
    """

    def config(self):
        self.x_shape = (1, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


202
class TestMatMulOp9(TestMatMulV2Op):
S
ShenLiang 已提交
203 204 205 206 207 208 209 210 211 212 213
    """
    case 9
    """

    def config(self):
        self.x_shape = (1, 1, 1, 100)
        self.y_shape = (2, 1, 2, 100)
        self.trans_x = False
        self.trans_y = True


214
class TestMatMulOp10(TestMatMulV2Op):
S
ShenLiang 已提交
215 216 217 218 219
    """
    case 10
    """

    def config(self):
S
ShenLiang 已提交
220 221
        self.x_shape = (1, 1, 25, 4)
        self.y_shape = (1, 2, 4, 25)
S
ShenLiang 已提交
222 223 224 225
        self.trans_x = False
        self.trans_y = False


226
class TestMatMulOp11(TestMatMulV2Op):
S
ShenLiang 已提交
227 228 229 230 231 232 233 234 235 236 237
    """
    case 11
    """

    def config(self):
        self.x_shape = (2, 1, 2, 100)
        self.y_shape = (1, 1, 100, 2)
        self.trans_x = False
        self.trans_y = False


238
class TestMatMulOp12(TestMatMulV2Op):
S
ShenLiang 已提交
239 240 241 242 243
    """
    case 12
    """

    def config(self):
S
ShenLiang 已提交
244 245
        self.x_shape = (2, 1, 4, 25)
        self.y_shape = (1, 1, 4, 25)
S
ShenLiang 已提交
246 247 248 249
        self.trans_x = True
        self.trans_y = False


250
class TestMatMulOp13(TestMatMulV2Op):
S
ShenLiang 已提交
251 252 253 254 255
    """
    case 13
    """

    def config(self):
S
ShenLiang 已提交
256 257
        self.x_shape = (2, 2, 10, 10)
        self.y_shape = (2, 2, 10, 10)
S
ShenLiang 已提交
258 259 260 261
        self.trans_x = True
        self.trans_y = False


262
class TestMatMulOp14(TestMatMulV2Op):
S
ShenLiang 已提交
263 264 265 266 267
    """
    case 14_1
    """

    def config(self):
268 269
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
270 271 272 273
        self.trans_x = True
        self.trans_y = False


274
class TestMatMulOp15(TestMatMulV2Op):
S
ShenLiang 已提交
275 276 277 278 279
    """
    case 14_2
    """

    def config(self):
280 281
        self.x_shape = (3, 1, 6, 6)
        self.y_shape = (1, 2, 6, 9)
S
ShenLiang 已提交
282 283 284 285
        self.trans_x = False
        self.trans_y = False


286
class TestMatMulOp16(TestMatMulV2Op):
S
ShenLiang 已提交
287 288 289 290 291 292
    """
    case 16 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (100)
S
ShenLiang 已提交
293
        self.y_shape = (1, 2, 2, 100, 2)
S
ShenLiang 已提交
294 295 296 297
        self.trans_x = False
        self.trans_y = False


298
class TestMatMulOp17(TestMatMulV2Op):
S
ShenLiang 已提交
299 300 301 302 303 304 305 306 307
    """
    case 17 : to check the gradient for special case
    """

    def config(self):
        self.x_shape = (2, 1, 100)
        self.y_shape = (100)
        self.trans_x = False
        self.trans_y = False
S
ShenLiang 已提交
308 309


310
class TestMatMulOpBroadcast1(TestMatMulV2Op):
311 312 313 314 315 316 317 318 319 320 321
    """
    case 14_3
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = True
        self.trans_y = True


322
class TestMatMulOpBroadcast2(TestMatMulV2Op):
323 324 325 326 327 328 329 330 331 332 333
    """
    case 14_4
    """

    def config(self):
        self.x_shape = (3, 1, 10, 10)
        self.y_shape = (1, 2, 10, 10)
        self.trans_x = False
        self.trans_y = True


S
ShenLiang 已提交
334 335 336 337
#--------------------test matmul fp16--------------------


def create_test_fp16_class(parent, atol=0.001, max_relative_error=1.0):
338

S
ShenLiang 已提交
339 340 341
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestMatMulOpFp16Case(parent):
342

S
ShenLiang 已提交
343 344 345 346 347 348 349
        def init_kernel_type(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
350 351 352
                    self.check_output_with_place(place,
                                                 atol=atol,
                                                 check_eager=False)
S
ShenLiang 已提交
353 354 355 356 357 358 359

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X', 'Y'],
                    'Out',
360
                    max_relative_error=max_relative_error,
361
                    check_eager=False)
S
ShenLiang 已提交
362 363 364 365 366 367 368

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestMatMulOpFp16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpFp16Case


create_test_fp16_class(TestMatMulV2Op)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
create_test_fp16_class(TestMatMulOp2)
create_test_fp16_class(TestMatMulOp3)
create_test_fp16_class(TestMatMulOp4)
create_test_fp16_class(TestMatMulOp5)
create_test_fp16_class(TestMatMulOp6)
create_test_fp16_class(TestMatMulOp7)
create_test_fp16_class(TestMatMulOp8)
create_test_fp16_class(TestMatMulOp9)
create_test_fp16_class(TestMatMulOp10)
create_test_fp16_class(TestMatMulOp11)
create_test_fp16_class(TestMatMulOp12)
create_test_fp16_class(TestMatMulOp13)
create_test_fp16_class(TestMatMulOp14)
create_test_fp16_class(TestMatMulOp15)
create_test_fp16_class(TestMatMulOp16)
create_test_fp16_class(TestMatMulOp17)

#--------------------test matmul bf16--------------------


def create_test_bf16_class(parent, atol=0.01):
390

391
    @unittest.skipIf(
392 393
        not core.is_compiled_with_cuda()
        or not core.is_bfloat16_supported(core.CUDAPlace(0)),
394
        "core is not compiled with CUDA and not support the bfloat16")
395
    class TestMatMulOpBf16Case(parent):
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        def get_numeric_grad(self, place, check_name):
            scope = core.Scope()
            self._check_grad_helper()
            op = create_op(scope, self.op_type, self.inputs, self.outputs,
                           self.attrs)
            return get_numeric_gradient(place, scope, op, self.inputs_fp32,
                                        check_name, ['Out'])

        def init_kernel_type(self):
            self.dtype = np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=atol)

        def test_check_grad_x(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'X')
415 416 417 418
            self.check_grad_with_place(place, ['X'],
                                       'Out',
                                       no_grad_set=set(['Y']),
                                       user_defined_grads=[numeric_grads])
419 420 421 422

        def test_check_grad_y(self):
            place = core.CUDAPlace(0)
            numeric_grads = self.get_numeric_grad(place, 'Y')
423 424 425 426
            self.check_grad_with_place(place, ['Y'],
                                       'Out',
                                       no_grad_set=set(['X']),
                                       user_defined_grads=[numeric_grads])
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestMatMulOpBf16Case.__name__ = cls_name
    globals()[cls_name] = TestMatMulOpBf16Case


create_test_bf16_class(TestMatMulV2Op)
create_test_bf16_class(TestMatMulOp2)
create_test_bf16_class(TestMatMulOp3)
create_test_bf16_class(TestMatMulOp4)
create_test_bf16_class(TestMatMulOp5)
create_test_bf16_class(TestMatMulOp6)
create_test_bf16_class(TestMatMulOp7)
create_test_bf16_class(TestMatMulOp8)
create_test_bf16_class(TestMatMulOp9)
create_test_bf16_class(TestMatMulOp10)
create_test_bf16_class(TestMatMulOp11)
create_test_bf16_class(TestMatMulOp12)
create_test_bf16_class(TestMatMulOp13)
create_test_bf16_class(TestMatMulOp14)
create_test_bf16_class(TestMatMulOp15)
create_test_bf16_class(TestMatMulOp16)
create_test_bf16_class(TestMatMulOp17)
S
ShenLiang 已提交
453 454 455


class TestMatMulV2API(unittest.TestCase):
456

S
ShenLiang 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = fluid.data(name="input_x", shape=[4, 3], dtype="float32")
            input_y = fluid.data(name="input_y", shape=[3, 4], dtype="float32")

            result = paddle.matmul(input_x, input_y)

            x_np = np.random.random([4, 3]).astype("float32")
            y_np = np.random.random([3, 4]).astype("float32")

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
474 475 476 477
                              feed={
                                  "input_x": x_np,
                                  "input_y": y_np
                              },
S
ShenLiang 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                              fetch_list=[result])

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_x = np.random.random([4, 3]).astype("float64")
                input_y = np.random.random([3, 4]).astype("float64")
                x = paddle.to_tensor(input_x)
                y = paddle.to_tensor(input_y)
                result = paddle.matmul(x, y)

S
ShenLiang 已提交
493 494 495 496 497 498 499 500 501 502 503
    def test_dygraph_fp16(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
                    input_x = np.random.random([4, 3]).astype("float16")
                    input_y = np.random.random([3, 4]).astype("float16")
                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)

504 505 506 507 508
    def test_compute_type_fp32(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
509 510
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
511 512 513 514 515 516 517 518 519 520 521 522 523
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertTrue(paddle.isfinite(result)[0, 0, 0])
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
524
                    np.testing.assert_array_equal(result_np, result.numpy())
525 526
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
527 528 529 530 531 532

    def test_compute_type_fp16_nan(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                with fluid.dygraph.guard(place):
533 534
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': True})
535 536 537 538 539 540 541 542 543 544 545 546 547 548
                    input_x = np.random.random([2, 8, 16]).astype("float16")
                    input_y = np.random.random([2, 16, 8]).astype("float16")
                    for i in range(0, 16, 2):
                        input_x[:, :, i] += 60000
                        input_x[:, :, i + 1] -= 60000
                    input_y[:, :, :] = 1.5

                    x = paddle.to_tensor(input_x)
                    y = paddle.to_tensor(input_y)
                    result = paddle.matmul(x, y)
                    result_np = np.matmul(input_x, input_y)
                    self.assertFalse(
                        paddle.isfinite(result)[0, 0, 0])  # contains nan/inf
                    self.assertTrue(np.isfinite(result_np)[0, 0, 0])
549 550
                    paddle.set_flags(
                        {'FLAGS_gemm_use_half_precision_compute_type': False})
551

552 553 554 555 556
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_dygraph()
            self.test_dygraph_fp16()

S
ShenLiang 已提交
557

C
chentianyu03 已提交
558
class TestComplexMatMulOp(OpTest):
559

C
chentianyu03 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)

    def test_check_output(self):
592
        self.check_output(check_eager=False)
C
chentianyu03 已提交
593 594

    def test_check_grad_normal(self):
595 596 597 598 599
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
600 601

    def test_check_grad_ingore_x(self):
602 603 604 605 606 607
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
608 609

    def test_check_grad_ingore_y(self):
610 611 612 613 614 615
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
616 617 618


class TestComplexMatMulOpBroadcast(OpTest):
619

C
chentianyu03 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    def setUp(self):
        self.op_type = "matmul_v2"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (10, 2, 5)).astype(self.dtype) + 1J * np.random.random(
                (10, 2, 5)).astype(self.dtype)
        self.y = np.random.random(
            (5, 20)).astype(self.dtype) + 1J * np.random.random(
                (5, 20)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 2, 20), self.dtype) + 1J * np.ones(
            (10, 2, 20), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T)
        self.grad_y = np.sum(np.matmul(
            np.conj(self.x).transpose(0, 2, 1), self.grad_out),
                             axis=0)

    def test_check_output(self):
654
        self.check_output(check_eager=False)
C
chentianyu03 已提交
655 656

    def test_check_grad_normal(self):
657 658 659 660 661
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
662 663

    def test_check_grad_ingore_x(self):
664 665 666 667 668 669
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
670 671

    def test_check_grad_ingore_y(self):
672 673 674 675 676 677
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out],
                        check_eager=False)
C
chentianyu03 已提交
678 679


C
chentianyu03 已提交
680
class TestMatMulTypePromotion(TestComplexMatMulOp):
681

C
chentianyu03 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695
    def init_input_output(self):
        self.x = np.random.random((10, 10)).astype(self.dtype)
        self.y = np.random.random(
            (10, 10)).astype(self.dtype) + 1J * np.random.random(
                (10, 10)).astype(self.dtype)
        self.out = np.dot(self.x, self.y)

    def init_grad_input_output(self):
        self.grad_out = np.ones((10, 10), self.dtype) + 1J * np.ones(
            (10, 10), self.dtype)
        self.grad_x = np.matmul(self.grad_out, np.conj(self.y).T).real
        self.grad_y = np.matmul(np.conj(self.x).T, self.grad_out)


S
ShenLiang 已提交
696
if __name__ == "__main__":
C
chentianyu03 已提交
697
    paddle.enable_static()
S
ShenLiang 已提交
698
    unittest.main()