test_communicator_geo.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import sys
17
import time
18
import threading
19 20
import subprocess
import unittest
21
import numpy
22

23
import paddle
24 25
import paddle.fluid as fluid

26
import paddle.distributed.fleet.base.role_maker as role_maker
27
import paddle.distributed.fleet as fleet
28

R
Roc 已提交
29
from paddle.distributed.utils.launch_utils import find_free_ports
T
tangwei12 已提交
30

P
pangyoki 已提交
31 32
paddle.enable_static()

33

34
class TestCommunicatorGeoEnd2End(unittest.TestCase):
35

36 37
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
38 39 40 41 42 43 44 45 46 47 48 49 50
        x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
        y_predict = fluid.layers.fc(input=z, size=1, act=None)
51 52 53
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
54
        avg_cost = paddle.mean(cost)
55
        return avg_cost, x, x1, y
56

57
    def fake_reader(self):
58

59 60 61
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
62
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
63
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
64
                yield x, z, y
65

66
        return reader
67

68 69
    def run_pserver(self, role, strategy):
        fleet.init(role)
70
        avg_cost, x, z, y = self.net()
71
        optimizer = fluid.optimizer.SGD(0.01)
72 73
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
74

75 76 77 78 79 80 81 82
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
83
        avg_cost, x, z, y = self.net()
84
        optimizer = fluid.optimizer.SGD(0.01)
85 86 87
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

88
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
89
        fleet.init_worker()
90 91

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
92
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
93 94

        for batch_id, data in enumerate(train_reader()):
95 96 97
            exe.run(fluid.default_main_program(),
                    feed=feeder.feed(data),
                    fetch_list=[])
98

99
        fleet.stop_worker()
100

101 102 103
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

104 105 106 107
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
T
tangwei12 已提交
108
        os.environ["POD_IP"] = "127.0.0.1"
109

110 111
        role = role_maker.PaddleCloudRoleMaker()

112
        strategy = paddle.distributed.fleet.DistributedStrategy()
113 114
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
C
Chengmo 已提交
115
        strategy.a_sync_configs = {"launch_barrier": False}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
140
import paddle.distributed.fleet as fleet
141 142 143

from test_communicator_geo import TestCommunicatorGeoEnd2End

P
pangyoki 已提交
144
paddle.enable_static()
145 146 147 148 149 150 151 152 153 154 155 156 157 158

class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
T
tangwei12 已提交
159 160 161

        port = find_free_ports(1).pop()

162
        os.environ["TRAINING_ROLE"] = "PSERVER"
T
tangwei12 已提交
163 164
        os.environ["PADDLE_PORT"] = str(port)
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:{}".format(port)
165 166 167 168

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
T
tangwei12 已提交
169

170 171 172
        ps_proc = subprocess.Popen(ps_cmd.strip().split(" "),
                                   stdout=subprocess.PIPE,
                                   stderr=subprocess.PIPE)
173

T
tangwei12 已提交
174
        time.sleep(5)
175

176
        os.environ["TRAINING_ROLE"] = "TRAINER"
177

178 179
        self.run_ut()
        ps_proc.kill()
T
tangwei12 已提交
180
        ps_proc.wait()
T
tangwei12 已提交
181
        outs, errs = ps_proc.communicate()
182

183 184
        if os.path.exists(server_file):
            os.remove(server_file)
185

186 187 188

if __name__ == '__main__':
    unittest.main()