test_sequence_conv.py 9.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16 17
import unittest
import numpy as np
import random
18
import sys
19

20
sys.path.append("../")
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def seqconv(x,
            lod,
            filter,
            context_length,
            context_start,
            padding_trainable=False,
            padding_data=None):
    [T, M] = x.shape
    col = np.zeros((T, context_length * M)).astype('float32')
    offset = [0]
    for seq_len in lod[0]:
        offset.append(offset[-1] + seq_len)
    begin_pad = np.max([0, -context_start])
    for i in range(len(offset) - 1):
        for j in range(context_length):
            in_begin = offset[i] + context_start + j
            in_end = offset[i + 1] + context_start + j
            out_begin = offset[i]
            out_end = offset[i + 1]
            if in_begin < offset[i]:
                pad_size = np.min(
                    [offset[i] - in_begin, offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[j:j + pad_size, :]
48 49
                    col[offset[i]:offset[i] + pad_size,
                        j * M:(j + 1) * M] = sub_w
50 51 52 53 54 55 56 57 58 59
                out_begin = offset[i] + pad_size
                in_begin = offset[i]

            if in_end > offset[i + 1]:
                pad_size = np.min(
                    [in_end - offset[i + 1], offset[i + 1] - offset[i]])
                if padding_trainable:
                    sub_w = padding_data[begin_pad + context_start + j -
                                         pad_size:begin_pad + context_start +
                                         j, :]
60 61
                    col[offset[i + 1] - pad_size:offset[i + 1],
                        j * M:(j + 1) * M] = sub_w
62 63 64 65 66 67 68 69 70
                in_end = offset[i + 1]
                out_end = offset[i + 1] - pad_size
            if in_end <= in_begin:
                continue
            in_sub = x[in_begin:in_end, :]
            col[out_begin:out_end, j * M:(j + 1) * M] += in_sub
    return np.dot(col, filter)


C
chengduoZH 已提交
71
class TestSeqProject(OpTest):
72

C
chengduoZH 已提交
73 74 75 76 77 78 79
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_conv'

        if self.context_length == 1 \
                and self.context_start == 0 \
                and self.padding_trainable:
80
            print("If context_start is 0 " \
C
chengduoZH 已提交
81
                  "and context_length is 1," \
82
                  " padding_trainable should be false.")
C
chengduoZH 已提交
83 84 85
            return

        # one level, batch size
86 87
        x = np.random.uniform(
            0.1, 1, [self.input_size[0], self.input_size[1]]).astype('float32')
C
chengduoZH 已提交
88 89 90
        w = np.random.uniform(0.1, 1, [
            self.context_length * self.input_size[1], self.output_represention
        ]).astype('float32')
C
chengduoZH 已提交
91 92 93 94 95 96 97

        begin_pad = np.max([0, -self.context_start])
        end_pad = np.max([0, self.context_start + self.context_length - 1])
        total_pad = begin_pad + end_pad
        padding_data = np.random.uniform(
            0.1, 1, [total_pad, self.input_size[1]]).astype('float32')
        self.pad_data = padding_data
C
chengduoZH 已提交
98 99
        self.inputs = {
            'X': (x, self.lod),
C
chengduoZH 已提交
100
            'Filter': w,
C
chengduoZH 已提交
101
        }
C
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111
        self.inputs_val = ['X', 'Filter']
        self.inputs_val_no_x = ['Filter']
        self.inputs_val_no_f = ['X']

        if total_pad != 0:
            self.inputs['PaddingData'] = padding_data
            self.inputs_val = ['X', 'PaddingData', 'Filter']
            self.inputs_val_no_x = ['PaddingData', 'Filter']
            self.inputs_val_no_f = ['PaddingData', 'X']

C
chengduoZH 已提交
112
        self.attrs = {
C
chengduoZH 已提交
113 114 115 116
            'contextStart': self.context_start,
            'contextLength': self.context_length,
            'paddingTrainable': self.padding_trainable,
            'contextStride': self.context_stride
C
chengduoZH 已提交
117
        }
118 119
        out = seqconv(x, self.lod, w, self.context_length, self.context_start,
                      self.padding_trainable, self.pad_data)
C
chengduoZH 已提交
120 121 122 123 124 125 126
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.padding_trainable:
127 128 129
            self.check_grad(set(self.inputs_val),
                            'Out',
                            max_relative_error=0.05)
C
chengduoZH 已提交
130 131

    def test_check_grad_input(self):
132 133 134 135
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set(self.inputs_val_no_x))
C
chengduoZH 已提交
136 137 138

    def test_check_grad_padding_data(self):
        if self.padding_trainable:
139 140 141
            self.check_grad(['PaddingData'],
                            'Out',
                            no_grad_set=set(['X', 'Filter']))
C
chengduoZH 已提交
142 143

    def test_check_grad_Filter(self):
144 145 146 147
        self.check_grad(['Filter'],
                        'Out',
                        max_relative_error=0.05,
                        no_grad_set=set(self.inputs_val_no_f))
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149
    def test_check_grad_input_filter(self):
C
chengduoZH 已提交
150
        if self.padding_trainable:
151 152 153 154
            self.check_grad(['X', 'Filter'],
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['PaddingData']))
C
chengduoZH 已提交
155 156 157

    def test_check_grad_padding_input(self):
        if self.padding_trainable:
158 159 160 161
            self.check_grad(self.inputs_val_no_f,
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['Filter']))
C
chengduoZH 已提交
162 163 164

    def test_check_grad_padding_filter(self):
        if self.padding_trainable:
165 166 167 168
            self.check_grad(self.inputs_val_no_x,
                            'Out',
                            max_relative_error=0.05,
                            no_grad_set=set(['X']))
C
chengduoZH 已提交
169

C
chengduoZH 已提交
170 171 172 173 174 175 176 177
    def init_test_case(self):
        self.input_row = 11
        self.context_start = 0
        self.context_length = 1
        self.padding_trainable = False
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
178 179 180 181 182
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
183
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
184 185 186


class TestSeqProjectCase1(TestSeqProject):
187

C
chengduoZH 已提交
188 189 190 191 192 193 194
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
195
        self.input_size = [self.input_row, 50]
196 197 198 199 200
        offset_lod = [[0, 4, 5, 8, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
201
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
202 203


204
class TestSeqProjectCase2Len0(TestSeqProject):
205

206 207 208 209 210 211 212
    def init_test_case(self):
        self.input_row = 11
        self.context_start = -1
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
213
        self.input_size = [self.input_row, 50]
214 215 216 217 218 219 220 221 222
        offset_lod = [[0, 0, 4, 5, 5, 8, self.input_row, self.input_row]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
        self.output_represention = 8  # output feature size


class TestSeqProjectCase3(TestSeqProject):
223

C
chengduoZH 已提交
224 225 226 227 228 229 230
    def init_test_case(self):
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

Z
zhupengyang 已提交
231
        self.input_size = [self.input_row, 25]
232
        idx = list(range(self.input_size[0]))
C
chengduoZH 已提交
233
        del idx[0]
234 235 236 237 238 239
        offset_lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                      [self.input_size[0]]]
        self.lod = [[]]
        # convert from offset-based lod to length-based lod
        for i in range(len(offset_lod[0]) - 1):
            self.lod[0].append(offset_lod[0][i + 1] - offset_lod[0][i])
C
chengduoZH 已提交
240
        self.output_represention = 8  # output feature size
C
chengduoZH 已提交
241 242


243
class TestSeqConvApi(unittest.TestCase):
244

245 246 247 248
    def test_api(self):
        import paddle.fluid as fluid

        x = fluid.layers.data('x', shape=[32], lod_level=1)
249 250 251 252
        y = fluid.layers.sequence_conv(input=x,
                                       num_filters=2,
                                       filter_size=3,
                                       padding_start=None)
253 254 255 256 257 258 259 260 261

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(10, 32).astype("float32"), [[2, 3, 1, 4]], place)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(feed={'x': x_tensor}, fetch_list=[y], return_numpy=False)


C
chengduoZH 已提交
262 263
if __name__ == '__main__':
    unittest.main()