dist_sharding_save.py 3.8 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
17
from test_dist_base import TestDistRunnerBase
J
JZ-LIANG 已提交
18 19 20 21
from dist_mnist import cnn_model
# from paddle.fluid.incubate.fleet.collective import fleet
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
J
JZ-LIANG 已提交
22
import paddle.distributed.fleet.meta_optimizers.sharding as sharding
J
JZ-LIANG 已提交
23 24 25 26 27 28 29 30 31

import os
import sys
import pickle

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

J
JZ-LIANG 已提交
32

J
JZ-LIANG 已提交
33 34 35 36 37 38 39 40 41 42
def runtime_main():
    import paddle.distributed.fleet as fleet

    # model definition
    train_prog = paddle.fluid.Program()
    startup_prog = paddle.fluid.Program()
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
    fleet.init(role)
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
43 44 45 46 47 48
            input_x = paddle.fluid.layers.data(name="x",
                                               shape=[32],
                                               dtype='float32')
            input_y = paddle.fluid.layers.data(name="y",
                                               shape=[1],
                                               dtype='int64')
J
JZ-LIANG 已提交
49

J
JZ-LIANG 已提交
50
            fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
J
JZ-LIANG 已提交
51 52 53 54
            fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
            prediction = paddle.fluid.layers.fc(input=[fc_2],
                                                size=2,
                                                act='softmax')
55 56
            cost = paddle.fluid.layers.cross_entropy(input=prediction,
                                                     label=input_y)
57
            avg_cost = paddle.mean(x=cost)
J
JZ-LIANG 已提交
58 59 60

            strategy = paddle.distributed.fleet.DistributedStrategy()
            strategy.sharding = True
61 62 63 64 65
            strategy.sharding_configs = {
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 0.2,
                "sharding_degree": 2,
            }
J
JZ-LIANG 已提交
66

67 68 69 70
            optimizer = paddle.fluid.optimizer.Momentum(learning_rate=0.01,
                                                        momentum=0.9)
            optimizer = fleet.distributed_optimizer(optimizer,
                                                    strategy=strategy)
J
JZ-LIANG 已提交
71 72 73 74 75 76 77
            optimizer.minimize(avg_cost)

    # execution
    device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
    place = fluid.CUDAPlace(device_id)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
J
JZ-LIANG 已提交
78
    dirname = "./ut_sharding_save_model"
79 80 81 82
    sharding.utils.save_persistables(exe,
                                     dirname,
                                     main_program=train_prog,
                                     filename=None)
J
JZ-LIANG 已提交
83

J
JZ-LIANG 已提交
84
    out_losses = []
T
tianshuo78520a 已提交
85
    sys.stdout.buffer.write(pickle.dumps(out_losses))
J
JZ-LIANG 已提交
86

J
JZ-LIANG 已提交
87

J
JZ-LIANG 已提交
88 89
if __name__ == "__main__":
    #NOTE(liangjianzhong): dist unittest should be imlpement using runtime_main in test_dist_base.py
90 91
    # but the runtime_main in test_dist_base.py use the fleet, DistributedStrategy from
    # paddle.fluid.incubate.fleet.collective which is not support by sharding (paddle.distributed.fleet).
J
JZ-LIANG 已提交
92 93 94
    # this should be update in future.
    # runtime_main(TestDistMnist2x2)
    runtime_main()