test_squeeze2_op.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
import os
19
from op_test import OpTest
20
import paddle
21 22 23
from paddle.fluid.framework import program_guard, Program

from test_attribute_var import UnittestBase
24

25
paddle.enable_static()
26 27 28 29 30 31


# Correct: General.
class TestSqueezeOp(OpTest):
    def setUp(self):
        self.op_type = "squeeze2"
32 33 34 35
        self.python_api = paddle.squeeze
        self.python_out_sig = [
            "Out"
        ]  # python out sig is customized output signature.
36
        self.init_test_case()
37
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
38 39 40
        self.init_attrs()
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.new_shape),
41
            "XShape": np.random.random(self.ori_shape).astype("float64"),
42 43 44
        }

    def test_check_output(self):
45
        self.check_output(no_check_set=['XShape'], check_eager=True)
46 47

    def test_check_grad(self):
48
        self.check_grad(["X"], "Out", check_eager=True)
49 50

    def init_test_case(self):
Z
zhupengyang 已提交
51
        self.ori_shape = (1, 3, 1, 40)
52
        self.axes = (0, 2)
Z
zhupengyang 已提交
53
        self.new_shape = (3, 40)
54 55 56 57 58 59 60 61

    def init_attrs(self):
        self.attrs = {"axes": self.axes}


# Correct: There is mins axis.
class TestSqueezeOp1(TestSqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
62
        self.ori_shape = (1, 20, 1, 5)
63
        self.axes = (0, -2)
Z
zhupengyang 已提交
64
        self.new_shape = (20, 5)
65 66 67 68 69


# Correct: No axes input.
class TestSqueezeOp2(TestSqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
70
        self.ori_shape = (1, 20, 1, 5)
71
        self.axes = ()
Z
zhupengyang 已提交
72
        self.new_shape = (20, 5)
73 74


75
# Correct: Just part of axes be squeezed.
76 77
class TestSqueezeOp3(TestSqueezeOp):
    def init_test_case(self):
Z
zhupengyang 已提交
78
        self.ori_shape = (6, 1, 5, 1, 4, 1)
79
        self.axes = (1, -1)
Z
zhupengyang 已提交
80
        self.new_shape = (6, 5, 1, 4)
81 82


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
class TestSqueeze2AxesTensor(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 4]]
        self.save_path = os.path.join(self.temp_dir.name, 'squeeze_tensor')

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 3, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]
            feat = paddle.unsqueeze(feat, [0, 2])  # [1, 2, 3, 1, 10]
            # axes is a Variable
            axes = paddle.assign([0, 2])
            out = paddle.squeeze(feat, axes)
100
            out2 = paddle.squeeze(feat, axes)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue("Var[" in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out, out2])
            self.assertEqual(res[0].shape, (1, 2, 1, 3, 10))
            self.assertEqual(res[1].shape, (2, 3, 10))
            self.assertEqual(res[2].shape, (2, 3, 10))

            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            # Test for Inference Predictor
            infer_out = self.infer_prog()
            self.assertEqual(infer_out.shape, (2, 3, 10))


class TestSqueeze2AxesTensorList(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 4]]
        self.save_path = os.path.join(self.temp_dir.name, 'squeeze_tensor')

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(4, 10)
            x = paddle.randn([2, 3, 4])
            x.stop_gradient = False
            feat = fc(x)  # [2,3,10]
            feat = paddle.unsqueeze(feat, [0, 2])  # [1, 2, 3, 1, 10]
            # axes is a list[Variable]
            axes = [
                paddle.full([1], 0, dtype='int32'),
136
                paddle.full([1], 2, dtype='int32'),
137 138
            ]
            out = paddle.squeeze(feat, axes)
139
            out2 = paddle.squeeze(feat, axes)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue("Vars[" in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out, out2])
            self.assertEqual(res[0].shape, (1, 2, 1, 3, 10))
            self.assertEqual(res[1].shape, (2, 3, 10))
            self.assertEqual(res[2].shape, (2, 3, 10))

            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            # Test for Inference Predictor
            infer_out = self.infer_prog()
            self.assertEqual(infer_out.shape, (2, 3, 10))


158 159
if __name__ == "__main__":
    unittest.main()