convolution_kernel.cu 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
20
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const DenseTensor& kernel,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const int groups,
Z
zhangkaihuo 已提交
38
                  const bool subm,
39 40 41 42 43 44 45 46 47 48
                  SparseCooTensor* out,
                  DenseTensor* rulebook) {
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
Z
zhangkaihuo 已提交
49 50 51 52
  std::vector<int> kernel_sizes(kernel_dims.size());
  for (int i = 0; i < kernel_dims.size(); i++) {
    kernel_sizes[i] = kernel_dims[i];
  }
53
  phi::funcs::sparse::GetOutShape(
Z
zhangkaihuo 已提交
54
      x_dims, kernel_sizes, paddings, dilations, strides, &out_dims);
55 56 57 58 59 60 61 62 63 64 65 66 67
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
  std::vector<int> offsets(kernel_size + 1), h_counter(kernel_size);

  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensorMeta offsets_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
  DenseTensor offsets_per_kernel = phi::Empty(dev_ctx, std::move(offsets_meta));
Z
zhangkaihuo 已提交
68 69 70 71 72 73 74
  DenseTensorMeta index_meta(DataType::INT32, {1}, DataLayout::NCHW);
  DenseTensor out_index = phi::Empty(dev_ctx, std::move(index_meta));
  DenseTensor unique_key = phi::Empty(dev_ctx, std::move(index_meta));
  DenseTensor unique_value = phi::Empty(dev_ctx, std::move(index_meta));

  std::vector<int> subm_paddings(paddings), subm_strides(strides);
  if (subm) {
75 76
    phi::funcs::sparse::ResetSubmKernelSizeAndStrides(
        kernel.dims(), &subm_paddings, &subm_strides);
Z
zhangkaihuo 已提交
77
  }
78 79 80

  int n = ProductRuleBook<T, Context>(dev_ctx,
                                      x,
Z
zhangkaihuo 已提交
81
                                      kernel_sizes,
Z
zhangkaihuo 已提交
82
                                      subm_paddings,
83
                                      dilations,
Z
zhangkaihuo 已提交
84
                                      subm_strides,
85
                                      out_dims,
Z
zhangkaihuo 已提交
86
                                      subm,
87 88 89 90 91 92 93 94 95 96 97 98
                                      rulebook,
                                      &counter_per_kernel,
                                      &offsets_per_kernel,
                                      &out_index,
                                      &unique_key,
                                      &unique_value,
                                      out,
                                      &h_counter,
                                      &offsets);

  const int* counter_ptr = counter_per_kernel.data<int>();
  const int* offsets_ptr = counter_per_kernel.data<int>();
99
  const int* rulebook_ptr = rulebook->data<int>();
100 101 102 103 104 105 106 107 108 109 110 111

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();
Z
zhangkaihuo 已提交
112 113
  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, &out_features, static_cast<T>(0.0f));
114 115 116 117 118 119 120

  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n * in_channels, 1);
  GatherKernel<T, int><<<config.block_per_grid.x,
                         config.thread_per_block.x,
                         0,
                         dev_ctx.stream()>>>(x.non_zero_elements().data<T>(),
121
                                             rulebook_ptr + n,
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                                             in_features_ptr,
                                             n,
                                             in_channels);

  // 3. call gemm for every werght
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  auto* out_values = out->mutable_non_zero_elements();
  T* out_values_ptr = out_values->data<T>();

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
    if (h_counter[i] <= 0) {
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
    const int M = h_counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
    T* tmp_out_ptr = out_features_ptr + offsets[i] * out_channels;

    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, out->nnz() * out_channels, 1);
  ScatterKernel<T><<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(out_features_ptr,
                                         unique_value.data<int>(),
                                         out_index.data<int>(),
                                         out->nnz(),
                                         n,
                                         out_channels,
                                         out_values_ptr);
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sparse_conv3d,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}