use_eigen_cn.html 28.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>在Paddle中如何使用Eigen &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
125
<li class="toctree-l2"><a class="reference internal" href="../usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
156 157 158 159 160 161 162 163
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>在Paddle中如何使用Eigen</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="paddleeigen">
<span id="paddleeigen"></span><h1>在Paddle中如何使用Eigen<a class="headerlink" href="#paddleeigen" title="永久链接至标题"></a></h1>
<p>神经网络本质上是一个计算图,计算需要的数据存放在<code class="docutils literal"><span class="pre">Tensor</span></code>中,而计算过程是由<code class="docutils literal"><span class="pre">Operartor</span></code>来描述的。在执行时,<code class="docutils literal"><span class="pre">Operator</span></code>调用对应<code class="docutils literal"><span class="pre">OpKernel</span></code>中的<code class="docutils literal"><span class="pre">Compute</span></code>接口,实现对<code class="docutils literal"><span class="pre">Tensor</span></code>的操作。</p>
<div class="section" id="eigen-tensor">
<span id="eigen-tensor"></span><h2>Eigen Tensor模块<a class="headerlink" href="#eigen-tensor" title="永久链接至标题"></a></h2>
<p>Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。</p>
<p>关于Eigen Tensor模块的详细介绍请参考<a class="reference external" href="https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md">文档1</a><a class="reference external" href="https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md">文档2</a></p>
</div>
<div class="section" id="paddle-framework-tensor">
<span id="paddle-framework-tensor"></span><h2>paddle::framework::Tensor<a class="headerlink" href="#paddle-framework-tensor" title="永久链接至标题"></a></h2>
<p>Paddle Tensor定义在framework目录下,其主要接口如下:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Tensor</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="cm">/*! Return a pointer to mutable memory block. */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">data</span><span class="p">();</span>
  
  <span class="cm">/**</span>
<span class="cm">   * @brief   Return a pointer to mutable memory block.</span>
<span class="cm">   * @note    If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>
  
  <span class="cm">/**</span>
<span class="cm">   * @brief     Return a pointer to mutable memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @param[in] dims    The dimensions of the memory block.</span>
<span class="cm">   * @param[in] place   The place of the memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @note      If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">DDim</span> <span class="n">dims</span><span class="p">,</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>
  
  <span class="cm">/*! Resize the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="n">Tensor</span><span class="o">&amp;</span> <span class="n">Resize</span><span class="p">(</span><span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">);</span>
  
  <span class="cm">/*! Return the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">()</span> <span class="k">const</span><span class="p">;</span>

 <span class="k">private</span><span class="o">:</span>  
  <span class="cm">/*! holds the memory block if allocated. */</span>
  <span class="n">std</span><span class="o">::</span><span class="n">shared_ptr</span><span class="o">&lt;</span><span class="n">Placeholder</span><span class="o">&gt;</span> <span class="n">holder_</span><span class="p">;</span>
  
  <span class="cm">/*! points to dimensions of memory block. */</span>
  <span class="n">DDim</span> <span class="n">dim_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">Placeholder</span></code>的作用是延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">::</span><span class="n">framework</span><span class="o">::</span><span class="n">Tensor</span> <span class="n">t</span><span class="p">;</span>
<span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span> <span class="n">place</span><span class="p">;</span>
<span class="c1">// set size first</span>
<span class="n">t</span><span class="p">.</span><span class="n">Resize</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">});</span>
<span class="c1">// allocate memory on CPU later</span>
<span class="n">t</span><span class="p">.</span><span class="n">mutable_data</span><span class="p">(</span><span class="n">place</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="paddle-framework-tensor">
<span id="id1"></span><h2>paddle::framework::Tensor使用样例<a class="headerlink" href="#paddle-framework-tensor" title="永久链接至标题"></a></h2>
<p>下面以AddOp为例说明Tensor的使用过程:</p>
<ul class="simple">
<li>InferShape</li>
</ul>
<p>在运行神经网络计算图时,我们先调用每个<code class="docutils literal"><span class="pre">Operator</span></code><code class="docutils literal"><span class="pre">InferShape</span></code>接口,根据输入Tensor的大小来设置输出Tensor的大小,<code class="docutils literal"><span class="pre">Resize</span></code>接口会被调用。</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="nf">InferShape</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">InferShapeContext</span> <span class="o">&amp;</span><span class="n">ctx</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
  <span class="n">PADDLE_ENFORCE_EQ</span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">(),</span>
                    <span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">(),</span>
                    <span class="s">&quot;Two input of Add Op&#39;s dimension must be same.&quot;</span><span class="p">);</span>
  <span class="n">ctx</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">Resize</span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">());</span>
<span class="p">}</span>
</pre></div>
</div>
<ul class="simple">
<li>Run</li>
</ul>
<p><code class="docutils literal"><span class="pre">Operator</span></code><code class="docutils literal"><span class="pre">Run</span></code>接口最终会调用对应<code class="docutils literal"><span class="pre">OpKernel</span></code><code class="docutils literal"><span class="pre">Compute</span></code>接口,在这时真正的分配内存,<code class="docutils literal"><span class="pre">mutable_data</span></code>接口会被调用。</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="nf">Compute</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">ExecutionContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">input0</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">);</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">input1</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">);</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">output</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">);</span>

  <span class="n">output</span><span class="o">-&gt;</span><span class="n">mutable_data</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="n">context</span><span class="p">.</span><span class="n">GetPlace</span><span class="p">());</span>

  <span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input0</span><span class="p">);</span>
  <span class="k">auto</span> <span class="n">y</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input1</span><span class="p">);</span>
  <span class="k">auto</span> <span class="n">z</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">output</span><span class="p">);</span>

  <span class="k">auto</span> <span class="n">place</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">GetEigenDevice</span><span class="o">&lt;</span><span class="n">Place</span><span class="o">&gt;</span><span class="p">();</span>

  <span class="n">z</span><span class="p">.</span><span class="n">device</span><span class="p">(</span><span class="n">place</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="paddle-framework-tensoreigentensor">
<span id="paddle-framework-tensoreigentensor"></span><h2>paddle::framework::Tensor到EigenTensor的转换<a class="headerlink" href="#paddle-framework-tensoreigentensor" title="永久链接至标题"></a></h2>
<p>如上一小节所示,在具体的计算中,我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h">eigen.h</a>中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。</p>
<p>以EigenTensor为例,做一个介绍</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Tensor</span> <span class="n">t</span><span class="p">;</span>
<span class="kt">float</span><span class="o">*</span> <span class="n">p</span> <span class="o">=</span> <span class="n">t</span><span class="p">.</span><span class="n">mutable_data</span><span class="o">&lt;</span><span class="kt">float</span><span class="o">&gt;</span><span class="p">(</span><span class="n">make_ddim</span><span class="p">({</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">}),</span> <span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">());</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="mi">1</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">*</span> <span class="mi">3</span><span class="p">;</span> <span class="n">i</span><span class="o">++</span><span class="p">)</span> <span class="p">{</span>
  <span class="n">p</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="k">static_cast</span><span class="o">&lt;</span><span class="kt">float</span><span class="o">&gt;</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<span class="p">}</span>

<span class="n">EigenTensor</span><span class="o">&lt;</span><span class="kt">float</span><span class="p">,</span> <span class="mi">3</span><span class="o">&gt;::</span><span class="n">Type</span> <span class="n">et</span> <span class="o">=</span> <span class="n">EigenTensor</span><span class="o">&lt;</span><span class="kt">float</span><span class="p">,</span> <span class="mi">3</span><span class="o">&gt;::</span><span class="n">From</span><span class="p">(</span><span class="n">t</span><span class="p">);</span>
</pre></div>
</div>
<p>From是EigenTensor模板提供的一个接口,可以实现从paddle::framework::Tensor到对EigenTensor的转换。由于Tensor的rank是模板参数,因此在转换时需要显示的指定。</p>
<p>在Eigen中,不同rank的Tensor是不同类型,Vector是rank为1的Tensor。需要额外注意的是,EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。</p>
<p>更多的转换方法请参考eigen_test.cc中的<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc">单元测试</a></p>
</div>
<div class="section" id="">
<span id="id2"></span><h2>实现计算<a class="headerlink" href="#" title="永久链接至标题"></a></h2>
<p>当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input0</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">y</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input1</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">z</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">output</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">place</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">GetEigenDevice</span><span class="o">&lt;</span><span class="n">Place</span><span class="o">&gt;</span><span class="p">();</span>
<span class="n">z</span><span class="p">.</span><span class="n">device</span><span class="p">(</span><span class="n">place</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span>
</pre></div>
</div>
<p>在这段代码中,input0/input1/output可以是任意维度的Tensor。我们调用了EigenVector的Flatten接口,把任意维度的Tensor转为了一维的EigenVector。而在计算结束之后,input0/input1/output的原有shape信息不变。如果想改变原有Tensor的shape信息,可以调用Resize接口进行改变。</p>
<p>由于Eigen Tensor模块的文档较少,我们可以参考TensorFlow的<a class="reference external" href="https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels">kernels</a>模块下的相关<code class="docutils literal"><span class="pre">OpKernel</span></code>的计算代码。</p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>