test_KmaxSeqScore.cpp 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
16
#include <algorithm>
C
caoying03 已提交
17 18 19
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
X
Xin Pan 已提交
20
#include "paddle/legacy/gserver/layers/DataLayer.h"
C
caoying03 已提交
21 22 23 24 25 26 27 28 29 30 31 32
#include "paddle/utils/GlobalConstants.h"

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);

33 34 35 36 37 38 39 40 41 42 43 44 45
vector<int> randSampling(int range, int n) {
  CHECK_GE(range, n);
  vector<int> num(range);
  iota(begin(num), end(num), 0);
  if (range == n) return num;

  random_shuffle(begin(num), end(num));
  num.resize(n);
  return num;
}

void genRandomSeqInfo(vector<int>& seqStartPosition,
                      vector<int>& subSeqStartPosition) {
46
  const int maxSeqNum = 100;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  // generate random start position information
  int seqNum = 1 + (rand() % maxSeqNum);
  seqStartPosition.resize(seqNum + 1, 0);
  subSeqStartPosition.resize(1, 0);

  for (int i = 0; i < seqNum; ++i) {
    int subSeqLen = 1 + (rand() % maxSeqNum);
    for (int j = 0; j < subSeqLen; ++j)
      subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen);
    seqStartPosition[i + 1] = subSeqStartPosition.back();
  }
}

void genRandomGroundTruth(real* values,
                          vector<vector<int>>& groundTruth,
62
                          vector<int>& startPos,
63
                          size_t beamSize) {
64 65 66 67 68 69 70 71
  groundTruth.resize(startPos.size() - 1, vector<int>(beamSize, -1));
  for (size_t i = 0; i < startPos.size() - 1; ++i) {
    int seqLen = startPos[i + 1] - startPos[i];
    vector<int> pos =
        randSampling(seqLen, min(static_cast<int>(beamSize), seqLen));
    for (size_t j = 0; j < pos.size(); ++j) {
      groundTruth[i][j] = pos[j];
      values[startPos[i] + pos[j]] = 1.;
72
    }
73 74
  }
}
75

76 77 78 79 80 81 82 83 84 85
void checkLayerOut(vector<vector<int>> groundTruth,
                   real* layerOut,
                   size_t beamSize) {
  for (size_t i = 0; i < groundTruth.size(); ++i) {
    int begPos = i * beamSize;
    vector<real> tmp(layerOut + begPos, layerOut + begPos + beamSize);
    sort(begin(tmp), end(tmp));
    sort(begin(groundTruth[i]), end(groundTruth[i]));
    for (size_t j = 0; j < beamSize; ++j) CHECK_EQ(tmp[j], groundTruth[i][j]);
  }
86 87
}

C
caoying03 已提交
88
TEST(Layer, kmaxSeqScoreLayer) {
89
  const size_t maxBeamSize = 100;
90
  size_t beamSize = 1 + (rand() % maxBeamSize);
91 92 93 94 95 96 97

  vector<int> seqStartPosition;
  vector<int> subSeqStartPosition;
  genRandomSeqInfo(seqStartPosition, subSeqStartPosition);
  MatrixPtr inValue =
      Matrix::create(subSeqStartPosition.back(), 1, false, false);

98
  std::vector<bool> mode = {false};
99
#ifdef PADDLE_WITH_CUDA
D
dangqingqing 已提交
100
  mode.push_back(true);
101 102
#endif

103 104
  for (auto hasSubseq : {false, true}) {
    vector<vector<int>> groundTruth;
105
    inValue->randomizeUniform();
106 107
    genRandomGroundTruth(inValue->getData(),
                         groundTruth,
108
                         hasSubseq ? subSeqStartPosition : seqStartPosition,
109 110
                         beamSize);

111
    for (auto useGpu : mode) {
C
caoying03 已提交
112 113
      TestConfig config;
      config.layerConfig.set_type("kmax_seq_score");
114
      config.layerConfig.set_beam_size(beamSize);
115 116 117 118 119 120 121 122 123 124 125

      if (hasSubseq) {
        config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
                                    "scores",
                                    inValue,
                                    seqStartPosition,
                                    subSeqStartPosition});
      } else {
        config.inputDefs.push_back(
            {INPUT_SELF_DEFINE_DATA, "scores", inValue, seqStartPosition});
      }
C
caoying03 已提交
126 127 128 129 130 131
      config.layerConfig.add_inputs();

      // data layer initialize
      std::vector<DataLayerPtr> dataLayers;
      LayerMap layerMap;
      vector<Argument> datas;
132 133 134 135 136 137 138 139 140
      initDataLayer(
          config,
          &dataLayers,
          &datas,
          &layerMap,
          "kmax_seq_score",
          100 /* actually this parameter is unused in self-defined input*/,
          false,
          useGpu);
C
caoying03 已提交
141 142 143
      // test layer initialize
      std::vector<ParameterPtr> parameters;
      LayerPtr kmaxSeqScoreLayer;
144
      FLAGS_use_gpu = useGpu;
C
caoying03 已提交
145 146
      initTestLayer(config, &layerMap, &parameters, &kmaxSeqScoreLayer);
      kmaxSeqScoreLayer->forward(PASS_TRAIN);
147 148 149 150 151 152 153

      const MatrixPtr outValue = kmaxSeqScoreLayer->getOutputValue();
      CHECK_EQ(outValue->getHeight(),
               hasSubseq ? subSeqStartPosition.size() - 1
                         : seqStartPosition.size() - 1);
      CHECK_EQ(outValue->getWidth(), beamSize);
      checkLayerOut(groundTruth, outValue->getData(), beamSize);
C
caoying03 已提交
154 155 156 157 158 159 160 161
    }
  }
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
162
  srand((size_t)(time(NULL)));
C
caoying03 已提交
163 164
  return RUN_ALL_TESTS();
}