slice_kernel_impl.h 5.2 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"

namespace phi {

template <typename T, typename Context, size_t D>
void SliceCompute(const Context& ctx,
                  const DenseTensor& input,
                  const std::vector<int64_t>& axes,
                  const std::vector<int64_t>& starts_t,
                  const std::vector<int64_t>& ends_t,
                  const std::vector<int64_t>& infer_flags,
                  const std::vector<int64_t>& decrease_axis,
                  DenseTensor* out) {
  // Step 1: Get the accurate attribute value of starts and ends
  std::vector<int64_t> starts = starts_t;
  std::vector<int64_t> ends = ends_t;
  PADDLE_ENFORCE_EQ(
      starts.size(),
      axes.size(),
      phi::errors::InvalidArgument(
          "The size of starts must be equal to the size of axes."));
  PADDLE_ENFORCE_EQ(ends.size(),
                    axes.size(),
                    phi::errors::InvalidArgument(
                        "The size of ends must be equal to the size of axes."));

  // Step 2: Compute output
  auto in = &input;

  auto in_dims = in->dims();
  auto out_dims = out->dims();
  auto slice_dims = out_dims;

  // 2.1 Infer output dims
  for (size_t i = 0; i < axes.size(); ++i) {
    // when start == -1 && end == start+1
    if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        ends[i] = in_dims[axes[i]];
      }
    }
  }

  funcs::CheckAndUpdateSliceAttrs<int64_t>(in_dims, axes, &starts, &ends);
  slice_dims = funcs::GetSliceDims<int64_t>(
      in_dims, axes, starts, ends, nullptr, nullptr);
  out_dims = funcs::GetDecreasedDims<int64_t>(slice_dims, decrease_axis);

  // 2.2 Get output
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();

  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = slice_dims[i];
  }
  for (size_t i = 0; i < axes.size(); ++i) {
    offsets[axes[i]] = starts[i];
  }

  out->Resize(slice_dims);
  ctx.template Alloc<T>(out);

  auto in_t = EigenTensor<T, D>::From(*in, in_dims);
  auto out_t = EigenTensor<T, D>::From(*out, slice_dims);
  auto& eigen_place = *ctx.eigen_device();

  if (in->numel() <= Eigen::NumTraits<int>::highest()) {
    // similar to tf.slice:
    // if element number less than INT_MAX, change the type of index to int
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = offsets[i];
      extents_32bit[i] = extents[i];
    }
    funcs::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place,
        To32BitIndex(out_t),
        To32BitIndex(in_t),
        offsets_32bit,
        extents_32bit);
  } else {
    funcs::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, out_t, in_t, offsets, extents);
  }

  out->Resize(out_dims);
}

template <typename T, typename Context>
void SliceRawKernel(const Context& ctx,
                    const DenseTensor& input,
                    const std::vector<int64_t>& axes,
                    const ScalarArray& starts_arr,
                    const ScalarArray& ends_arr,
                    const std::vector<int64_t>& infer_flags,
                    const std::vector<int64_t>& decrease_axis,
                    DenseTensor* out) {
  int rank = input.dims().size();

  auto& starts = starts_arr.GetData();
  auto& ends = ends_arr.GetData();

  switch (rank) {
    case 1:
      SliceCompute<T, Context, 1>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    case 2:
      SliceCompute<T, Context, 2>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    case 3:
      SliceCompute<T, Context, 3>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    case 4:
      SliceCompute<T, Context, 4>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    case 5:
      SliceCompute<T, Context, 5>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    case 6:
      SliceCompute<T, Context, 6>(
          ctx, input, axes, starts, ends, infer_flags, decrease_axis, out);
      break;
    default:
      PADDLE_THROW(phi::errors::InvalidArgument(
          "The rank of input should be less than 7, but received %d.", rank));
  }
}

}  // namespace phi