mnist.py 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gzip
import struct
import numpy as np
18
from PIL import Image
19

20
import paddle
21
from paddle.io import Dataset
22
from paddle.dataset.common import _check_exists_and_download
23

24
__all__ = []
25 26 27 28


class MNIST(Dataset):
    """
29
    Implementation of `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset.
30 31

    Args:
32 33 34 35 36 37 38 39 40 41 42
        image_path (str, optional): Path to image file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
        label_path (str, optional): Path to label file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/mnist.
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): Transform to perform on image, None for no transform. Default: None.
        download (bool, optional): Download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default: True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
43
            default backend is 'pil'. Default: None.
44

45
    Returns:
46
        :ref:`api_paddle_io_Dataset`. An instance of MNIST dataset.
47 48

    Examples:
49

50 51
        .. code-block:: python

52 53
            import itertools
            import paddle.vision.transforms as T
54
            from paddle.vision.datasets import MNIST
55 56


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
            mnist = MNIST()
            print(len(mnist))
            # 60000

            for i in range(5):  # only show first 5 images
                img, label = mnist[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (28, 28) [5]


            transform = T.Compose(
                [
                    T.ToTensor(),
                    T.Normalize(
                        mean=[127.5],
                        std=[127.5],
                    ),
                ]
            )

            mnist_test = MNIST(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(mnist_test))
            # 10000

            for img, label in itertools.islice(iter(mnist_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [1, 28, 28] [7]
90
    """
L
LielinJiang 已提交
91 92 93 94 95 96 97 98 99 100
    NAME = 'mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
101 102 103 104 105 106

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 mode='train',
                 transform=None,
107 108
                 download=True,
                 backend=None):
109 110
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
111 112 113 114 115

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
116 117
                "Expected backend are one of ['pil', 'cv2'], but got {}".format(
                    backend))
118 119
        self.backend = backend

120 121 122
        self.mode = mode.lower()
        self.image_path = image_path
        if self.image_path is None:
K
Kaipeng Deng 已提交
123
            assert download, "image_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
124 125
            image_url = self.TRAIN_IMAGE_URL if mode == 'train' else self.TEST_IMAGE_URL
            image_md5 = self.TRAIN_IMAGE_MD5 if mode == 'train' else self.TEST_IMAGE_MD5
126
            self.image_path = _check_exists_and_download(
L
LielinJiang 已提交
127
                image_path, image_url, image_md5, self.NAME, download)
128 129 130

        self.label_path = label_path
        if self.label_path is None:
K
Kaipeng Deng 已提交
131
            assert download, "label_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
132 133
            label_url = self.TRAIN_LABEL_URL if self.mode == 'train' else self.TEST_LABEL_URL
            label_md5 = self.TRAIN_LABEL_MD5 if self.mode == 'train' else self.TEST_LABEL_MD5
134
            self.label_path = _check_exists_and_download(
L
LielinJiang 已提交
135
                label_path, label_url, label_md5, self.NAME, download)
136 137 138 139 140 141

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

142 143
        self.dtype = paddle.get_default_dtype()

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
165 166
                magic_lab, label_num = struct.unpack_from(
                    magic_byte_lab, lab_buf, offset_lab)
167 168 169 170 171 172 173 174 175 176 177 178 179
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
180 181 182
                    images = np.reshape(
                        images_temp,
                        (buffer_size, rows * cols)).astype('float32')
183 184 185 186 187 188 189 190 191
                    offset_img += struct.calcsize(fmt_images)

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
192 193 194
        image = np.reshape(image, [28, 28])

        if self.backend == 'pil':
L
LielinJiang 已提交
195
            image = Image.fromarray(image.astype('uint8'), mode='L')
196

197 198
        if self.transform is not None:
            image = self.transform(image)
199 200 201 202

        if self.backend == 'pil':
            return image, label.astype('int64')

203
        return image.astype(self.dtype), label.astype('int64')
204 205 206

    def __len__(self):
        return len(self.labels)
L
LielinJiang 已提交
207 208 209 210


class FashionMNIST(MNIST):
    """
211
    Implementation of `Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ dataset.
L
LielinJiang 已提交
212 213

    Args:
214 215 216 217 218 219 220 221 222 223 224
        image_path (str, optional): Path to image file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist.
        label_path (str, optional): Path to label file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/fashion-mnist.
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): Transform to perform on image, None for no transform. Default: None.
        download (bool, optional): Whether to download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default: True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
L
LielinJiang 已提交
225
            default backend is 'pil'. Default: None.
226

L
LielinJiang 已提交
227
    Returns:
228
        :ref:`api_paddle_io_Dataset`. An instance of FashionMNIST dataset.
L
LielinJiang 已提交
229 230

    Examples:
231

L
LielinJiang 已提交
232 233
        .. code-block:: python

234 235
            import itertools
            import paddle.vision.transforms as T
L
LielinJiang 已提交
236 237 238
            from paddle.vision.datasets import FashionMNIST


239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
            fashion_mnist = FashionMNIST()
            print(len(fashion_mnist))
            # 60000

            for i in range(5):  # only show first 5 images
                img, label = fashion_mnist[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (28, 28) [9]


            transform = T.Compose(
                [
                    T.ToTensor(),
                    T.Normalize(
                        mean=[127.5],
                        std=[127.5],
                    ),
                ]
            )

            fashion_mnist_test = FashionMNIST(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(fashion_mnist_test))
            # 10000

            for img, label in itertools.islice(iter(fashion_mnist_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [1, 28, 28] [9]
L
LielinJiang 已提交
272 273 274 275 276 277 278 279 280 281 282 283
    """

    NAME = 'fashion-mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/fashion_mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = 'bef4ecab320f06d8554ea6380940ec79'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'bb300cfdad3c16e7a12a480ee83cd310'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = '8d4fb7e6c68d591d4c3dfef9ec88bf0d'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = '25c81989df183df01b3e8a0aad5dffbe'