dist_default.py 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
J
JZ-LIANG 已提交
18
from .common import register_distributed_operator_impl, is_parameter_related
19 20
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
21
from ..utils import is_valid_list_index, is_prim_op
22 23 24
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
25
from ..utils import set_dist_op_desc_original_id
26
from ..dist_attribute import OperatorDistributedAttribute
27
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _non_static_mode
29 30 31
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33
from ..utils import _get_comm_group, _get_corresponding_rank
34 35 36
from ..cost import _g_op_cost_factory
from ..cost import build_comp_desc_from_dist_op, build_dp_costs
from ..cost import build_comp_costs_from_descs
37

38 39
__op_not_need_param_init__ = ["while", "cond"]

40

41 42 43 44 45 46 47 48 49 50 51 52
def prim_operator_data_parallel_functor(ctx, src_op):
    dist_op_context = ctx.dist_op_context
    main_block = dist_op_context.work_block
    startup_block = dist_op_context.startup_block

    var_name = src_op.output_arg_names[0]
    if var_name in ctx.grads_params:
        assert var_name not in ctx.synced_gradient, "in primtive mode, grad is already {} synced".format(
            var_name)
        ctx.synced_gradient.add(var_name)
        sync_group = new_process_group(ctx.data_parallel_group)

53 54 55 56 57 58 59 60
        allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                            inputs={'X': [var_name]},
                                            outputs={'Out': [var_name]},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
61 62 63

        param = ctx.grads_params[var_name]
        startup_block = dist_op_context.startup_block
64 65 66 67 68 69 70 71 72
        new_op = startup_block.append_op(type='c_broadcast',
                                         inputs={'X': [param]},
                                         outputs={'Out': [param]},
                                         attrs={
                                             'ring_id': sync_group.id,
                                             'root': 0,
                                             'use_calc_stream': True,
                                             OP_ROLE_KEY: OpRole.Forward
                                         })
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

        grad_var = main_block.var(var_name)
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            grad_var).dims_mapping
        dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        process_mesh = dist_attr.process_mesh
        op_attr = OperatorDistributedAttribute()
        op_attr.process_mesh = process_mesh
        op_attr.set_output_dims_mapping(grad_var.name, dims_mapping)
        op_attr.set_input_dims_mapping(grad_var.name, dims_mapping)
        ctx.set_op_dist_attr_for_program(allreduce_op, op_attr)

    return


88
class DistributedDefault(DistributedOperatorImplContainer):
89

90 91
    def __init__(self, op_type):
        super(DistributedDefault, self).__init__(op_type)
92 93


94
register_distributed_operator_impl_container(DistributedDefault("default"))
95 96


97
# Replicated Default
98
class DistributedDefaultImpl0(DistributedOperatorImpl):
99

100
    def __init__(self, name):
101
        super(DistributedDefaultImpl0, self).__init__(name)
102 103 104
        self._forward_implemented = True
        self._backward_implemented = True

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        op_type = dist_op.serial_op.type
        cost_mapping = build_comp_costs_from_descs(_g_op_cost_factory[op_type],
                                                   ctx, processes, desc_mapping,
                                                   cluster)
        res_cost = [cost_mapping]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        backward_op = dist_op.serial_op
        op_type = backward_op.type
        cost_mapping = build_comp_costs_from_descs(_g_op_cost_factory[op_type],
                                                   ctx, processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        main_block = backward_op.block
        vars = main_block.vars
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)
                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
                        break

        if need_gradient_allreduce:
            for input_name in backward_op.desc.input_names():
                for varname in backward_op.desc.input(input_name):
                    if "@GRAD" not in varname and is_parameter_related(
                            varname, main_block):
                        var_dim_mapping = dist_attr.get_input_dims_mapping(
                            varname)
                        mesh_shape = process_mesh.topology
                        batch_size_axis = var_dim_mapping[0]
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)
        return res

173
    def is_input_compatible(self, dist_op):
174 175
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
176
        batch_dim_mappings = []
177 178 179 180
        input_names = op_desc.input_names()
        xshape_arg_names = []
        if "XShape" in input_names:
            xshape_arg_names = op_desc.input("XShape")
181 182 183
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
184 185 186 187
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
188
                continue
189 190 191 192 193
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
194 195
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
196 197 198 199 200 201 202
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
203 204 205 206 207 208
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])

        if compute_compatible_dim_mapping(batch_dim_mappings) is None:
            return False

209
        return True
210

211
    def is_output_compatible(self, dist_op):
212 213 214
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        output_names = op_desc.output_names()
215
        batch_dim_mappings = []
216 217 218 219 220 221
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
222 223 224 225
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
226
                continue
227 228 229 230 231
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
232 233
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
234 235 236 237 238 239 240
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
241 242 243 244 245 246
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])

        if compute_compatible_dim_mapping(batch_dim_mappings) is None:
            return False

247 248 249 250 251 252 253
        return True

    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        batch_dim_mappings = []
        # Check input compatibility
254 255 256 257
        input_names = op_desc.input_names()
        xshape_arg_names = []
        if "XShape" in input_names:
            xshape_arg_names = op_desc.input("XShape")
258 259
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
260
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
261
            if serial_tensor is not None and serial_tensor.is_parameter:
262 263 264
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
265
                continue
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])
282 283 284 285 286 287 288 289

        # Check output compatibility
        output_names = op_desc.output_names()
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
290
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
291
            if serial_tensor is not None and serial_tensor.is_parameter:
292 293 294
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
295 296 297 298 299 300
                continue
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
301 302
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
303 304 305 306 307 308 309
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
310 311
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])
312 313 314 315 316 317 318

        # Check batch dim mapping compatibility
        if not all(batch_dim_mappings[0] == dim_mapping
                   for dim_mapping in batch_dim_mappings):
            return False

        return True
319

320
    def update_dims_mapping(self, dist_op):
321 322 323
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
324 325

        if op_desc.type() == "while":
326
            return False
327 328 329 330 331 332

        input_names = op_desc.input_names()
        input_xshape_arg_names = []
        if "XShape" in input_names:
            input_xshape_arg_names = op_desc.input("XShape")

333
        output_names = op_desc.output_names()
334
        output_xshape_arg_names = []
335
        if "XShape" in output_names:
336 337
            output_xshape_arg_names = op_desc.output("XShape")

338 339 340 341 342 343
        batch_dim_mappings = []
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
344 345 346 347 348
            if arg_name not in input_xshape_arg_names:
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
            else:
                batch_dim_mappings.append(dims_mapping[1])
349
        for arg_name in op_desc.output_arg_names():
350
            if op_desc.type() == "fill_zeros_like":
351 352
                input_tensor = dist_op.get_serial_input(
                    op_desc.input_arg_names()[0])
353 354
                if input_tensor.is_parameter:
                    continue
355 356 357 358
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
359
            if arg_name not in output_xshape_arg_names:
360 361
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
362 363 364
            else:
                batch_dim_mappings.append(dims_mapping[1])

365 366 367
        if not batch_dim_mappings:
            return changed

368 369
        compatible_dim_mapping = compute_compatible_dim_mapping(
            batch_dim_mappings)
370 371 372
        if compatible_dim_mapping is None:
            return False

373 374 375 376 377
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
378 379 380 381 382 383 384 385 386 387
            if arg_name not in input_xshape_arg_names:
                if len(dims_mapping) >= 1 and \
                    compatible_dim_mapping != dims_mapping[0]:
                    dims_mapping[0] = compatible_dim_mapping
                    changed = True
            else:
                if len(dims_mapping) >= 2 and \
                    compatible_dim_mapping != dims_mapping[1]:
                    dims_mapping[1] = compatible_dim_mapping
                    changed = True
388
        for arg_name in op_desc.output_arg_names():
389
            if op_desc.type() == "fill_zeros_like":
390 391
                input_tensor = dist_op.get_serial_input(
                    op_desc.input_arg_names()[0])
392 393
                if input_tensor.is_parameter:
                    continue
394 395
            if op_desc.type() in ["shape", "slice"]:
                continue
396 397 398 399
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
400
            if arg_name not in output_xshape_arg_names:
401 402
                if len(dims_mapping
                       ) >= 1 and compatible_dim_mapping != dims_mapping[0]:
403 404 405
                    dims_mapping[0] = compatible_dim_mapping
                    changed = True
            else:
406 407
                if len(dims_mapping
                       ) >= 2 and compatible_dim_mapping != dims_mapping[1]:
408 409 410 411
                    dims_mapping[1] = compatible_dim_mapping
                    changed = True

        return changed
412 413 414

    @staticmethod
    def forward(ctx, *args, **kwargs):
415
        dist_op_context = ctx.dist_op_context
416 417 418 419
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
420

421
        # check validation of inputs / outputs
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
437
        dist_op_desc = main_block.append_op(type='nop').desc
438
        dist_op_desc.copy_from(src_op.desc)
439
        set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
440 441 442 443 444
        for input_name in src_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in src_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

445 446 447 448 449 450
        # data parallel synchronization for primtive operators
        from paddle.incubate.autograd import prim_enabled
        if prim_enabled():
            assert is_prim_op(src_op)
            prim_operator_data_parallel_functor(ctx, src_op)
            return
451 452

        # param initialization sync
453 454 455
        if src_op.type in __op_not_need_param_init__:
            return

456 457 458
        for varname in dist_op_desc.input_arg_names():
            if startup_block.has_var(varname) and startup_block.var(
                    varname
459 460
            ).is_parameter and varname not in dist_op_context.already_init_sync_vars:
                dist_op_context.already_init_sync_vars.add(varname)
461
                param = startup_block.var(varname)
462 463 464
                param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
                process_mesh = param_dist_attr.process_mesh
                dims_mapping = param_dist_attr.dims_mapping
465 466

                # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
467 468 469
                if rank_id not in process_mesh.processes:
                    rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                      rank_id)
470

471
                # NOTE all not splited axis should be presented in mesh
472 473 474 475
                for axis, size in enumerate(process_mesh.topology):
                    if size <= 1 or axis in dims_mapping:
                        pass
                    else:
476 477 478
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      axis, rank_id)
479 480
                        sync_group = new_process_group(group_ranks)

481 482 483 484 485 486 487 488 489 490 491 492 493
                        new_op = startup_block.append_op(type='c_broadcast',
                                                         inputs={'X': param},
                                                         outputs={'Out': param},
                                                         attrs={
                                                             'ring_id':
                                                             sync_group.id,
                                                             'root':
                                                             0,
                                                             'use_calc_stream':
                                                             True,
                                                             OP_ROLE_KEY:
                                                             OpRole.Forward
                                                         })
494 495

                        # set distributed attribute
496 497
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
498 499 500
                        op_attr.set_output_dims_mapping(param.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(param.name, dims_mapping)
501
                        ctx.set_op_dist_attr_for_program(new_op, op_attr)
502 503 504 505 506

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
507
        dist_op_context = ctx.dist_op_context
508 509
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
510
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
511 512
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
513
        rank_id = dist_op_context.rank_id
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        # check validation of inputs / outputs
        for input_name in backward_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                backward_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in backward_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                backward_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
531
        dist_op_desc = main_block.append_op(type='nop').desc
532
        dist_op_desc.copy_from(backward_op.desc)
533 534
        # Refer to the related dist op
        set_dist_op_desc_original_id(dist_op_desc, backward_op.desc, ctx)
535 536 537 538 539
        for input_name in backward_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in backward_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

540
        # check if need gradient allreduce
541
        # if there is a non-gradient & non-parameter input and its batch dimension is splited,
542 543 544 545
        # we need insert gradient allreduce for the gradient of parameter in its output
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
546 547
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
548 549

                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
550
                    process_mesh = dist_attr.process_mesh
551 552 553
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
554
                    if rank_id not in process_mesh.processes:
555 556
                        rank_id = _get_corresponding_rank(
                            ctx, process_mesh, rank_id)
557

Z
zhaoyingli 已提交
558
                    # NOTE: consider that the variable's shape is None
559
                    mesh_shape = process_mesh.topology
Z
zhaoyingli 已提交
560 561
                    batch_size_axis = var_dim_mapping[0] if len(
                        var_dim_mapping) > 0 else -1
562 563
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
564 565 566
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      batch_size_axis, rank_id)
567 568 569 570 571 572
                        dp_degree = len(group_ranks)
                        dp_group = new_process_group(group_ranks)
                        break

        if need_gradient_allreduce:
            allreduce_vars = []
573 574 575 576 577 578 579 580
            for output_name in backward_op.desc.output_names():
                for varname in backward_op.desc.output(output_name):
                    if varname in kwargs["grad_var_to_var"]:
                        fwd_name = kwargs["grad_var_to_var"][varname]
                        if fwd_name not in main_block.vars:
                            continue
                        if is_parameter_related(fwd_name, main_block):
                            allreduce_vars.append(varname)
581 582 583 584

            if len(allreduce_vars) > 0:

                for varname in allreduce_vars:
585
                    added_ops = []
586 587 588 589 590 591 592 593 594 595 596

                    grad_var = main_block.var(varname)
                    allreduce_op = main_block.append_op(
                        type='c_allreduce_sum',
                        inputs={'X': [grad_var]},
                        outputs={'Out': [grad_var]},
                        attrs={
                            'ring_id': dp_group.id,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Backward
                        })
597
                    added_ops.append(allreduce_op)
598

599 600 601 602 603 604 605 606 607 608
                    if ctx.gradient_scale:
                        scale_op = main_block.append_op(
                            type='scale',
                            inputs={'X': grad_var},
                            outputs={'Out': grad_var},
                            attrs={
                                'scale': 1.0 / dp_degree,
                                OP_ROLE_KEY: OpRole.Backward
                            })
                        added_ops.append(scale_op)
609

610 611 612
                    dims_mapping = ctx.get_tensor_dist_attr_for_program(
                        grad_var).dims_mapping
                    process_mesh = dist_attr.process_mesh
613
                    for op in added_ops:
614 615
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
616 617 618 619
                        op_attr.set_output_dims_mapping(grad_var.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(grad_var.name,
                                                       dims_mapping)
620
                        ctx.set_op_dist_attr_for_program(op, op_attr)
621 622 623 624


register_distributed_operator_impl(
    "default", DistributedDefaultImpl0("replicate_parallel"))