renorm_op.cc 4.1 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/renorm_op.h"

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {

class RenormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using DDim = paddle::framework::DDim;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs");

    auto in_dims = ctx->GetInputDim("X");

    ctx->SetOutputDim("Out", in_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RenormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of renorm op.");
    AddOutput("Out", "(Tensor), The output tensor of renorm op.");
    AddAttr<float>("p", "(float, norm's power");
    AddAttr<int>("axis",
                 "int,the dimension to slice over to get the sub-tensors");
    AddAttr<float>("max_norm", "(float, the norm upper-bound");
    AddAttr<bool>("use_cudnn",
                  "(bool, default false) Only used in cudnn kernel, need "
                  "install cudnn")
55 56
        .SetDefault(false)
        .AsExtra();
S
seemingwang 已提交
57 58
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
59 60
        .SetDefault(false)
        .AsExtra();
S
seemingwang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    AddComment(R"DOC(
Renorm Operator.

This operator is used to scale tensor sliced by axis if its p-norm execeeds maxnorm

)DOC");
  }
};

class RenormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@Grad", "AbsGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "AbsGrad");

    auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(dtype, ctx.GetPlace());
  }
};

template <typename T>
class RenormGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("renorm_grad");
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetInput("X", this->Input("X"));
    retv->SetAttrMap(this->Attrs());
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(renorm, ops::RenormOp, ops::RenormOpMaker,
                  ops::RenormGradMaker<paddle::framework::OpDesc>,
                  ops::RenormGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(renorm_grad, ops::RenormGradOp);

REGISTER_OP_CPU_KERNEL(renorm, ops::CPURenormKernel<float>,
                       ops::CPURenormKernel<double>);

REGISTER_OP_CPU_KERNEL(renorm_grad, ops::CPURenormGradKernel<float>,
119
                       ops::CPURenormGradKernel<double>);