test_cudnn_lstmcell.py 9.3 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17 18

import numpy as np

X
Xing Wu 已提交
19 20
import paddle.fluid as fluid
import paddle.fluid.core as core
X
Xing Wu 已提交
21
from paddle.fluid.dygraph import LSTMCell
X
Xing Wu 已提交
22 23 24 25 26

np.random.seed = 123


def sigmoid(x):
27
    return 1.0 / (1.0 + np.exp(-x))
X
Xing Wu 已提交
28 29 30


def tanh(x):
31
    return 2.0 * sigmoid(2.0 * x) - 1.0
X
Xing Wu 已提交
32 33


34 35 36
def non_cudnn_step(
    step_in, pre_hidden, pre_cell, gate_w, gate_b, forget_bias=1.0
):
X
Xing Wu 已提交
37 38 39 40 41 42 43 44 45 46 47 48
    concat_1 = np.concatenate([step_in, pre_hidden], 1)

    gate_input = np.matmul(concat_1, gate_w)
    gate_input += gate_b
    i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)

    new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
    new_hidden = tanh(new_cell) * sigmoid(o)

    return new_hidden, new_cell


49 50 51 52 53 54 55 56 57
def cudnn_step(
    step_input_np,
    pre_hidden_np,
    pre_cell_np,
    weight_ih,
    bias_ih,
    weight_hh,
    bias_hh,
):
X
Xing Wu 已提交
58

59
    igates = np.matmul(step_input_np, weight_ih.transpose(1, 0))
X
Xing Wu 已提交
60
    igates = igates + bias_ih
61
    hgates = np.matmul(pre_hidden_np, weight_hh.transpose(1, 0))
X
Xing Wu 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    hgates = hgates + bias_hh

    chunked_igates = np.split(igates, indices_or_sections=4, axis=1)
    chunked_hgates = np.split(hgates, indices_or_sections=4, axis=1)

    ingate = chunked_igates[0] + chunked_hgates[0]
    ingate = sigmoid(ingate)

    forgetgate = chunked_igates[1] + chunked_hgates[1]
    forgetgate = sigmoid(forgetgate)

    cellgate = chunked_igates[2] + chunked_hgates[2]
    cellgate = tanh(cellgate)

    outgate = chunked_igates[3] + chunked_hgates[3]
    outgate = sigmoid(outgate)

    new_cell = (forgetgate * pre_cell_np) + (ingate * cellgate)
    new_hidden = outgate * tanh(new_cell)

    return new_hidden, new_cell


class TestCudnnLSTM(unittest.TestCase):
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 128

    def test_run(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
100 101 102
            named_cudnn_lstm = LSTMCell(
                self.hidden_size, self.input_size, param_attr, bias_attr
            )
X
Xing Wu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
            cudnn_lstm = LSTMCell(self.hidden_size, self.input_size)

            param_list = cudnn_lstm.state_dict()
            named_param_list = named_cudnn_lstm.state_dict()

            # process weight and bias

            weight_ih_name = "_weight_ih"
            bias_ih_name = "_bias_ih"
            weight_hh_name = "_weight_hh"
            bias_hh_name = "_bias_hh"
            weight_ih = param_list[weight_ih_name].numpy()
            weight_ih = np.random.uniform(
116 117
                -0.1, 0.1, size=weight_ih.shape
            ).astype('float64')
X
Xing Wu 已提交
118 119 120 121
            param_list[weight_ih_name].set_value(weight_ih)
            named_param_list[weight_ih_name].set_value(weight_ih)

            bias_ih = param_list[bias_ih_name].numpy()
122 123 124
            bias_ih = np.random.uniform(-0.1, 0.1, size=bias_ih.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
125 126 127 128 129
            param_list[bias_ih_name].set_value(bias_ih)
            named_param_list[bias_ih_name].set_value(bias_ih)

            weight_hh = param_list[weight_hh_name].numpy()
            weight_hh = np.random.uniform(
130 131
                -0.1, 0.1, size=weight_hh.shape
            ).astype('float64')
X
Xing Wu 已提交
132 133 134 135
            param_list[weight_hh_name].set_value(weight_hh)
            named_param_list[weight_hh_name].set_value(weight_hh)

            bias_hh = param_list[bias_hh_name].numpy()
136 137 138
            bias_hh = np.random.uniform(-0.1, 0.1, size=bias_hh.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
139 140 141
            param_list[bias_hh_name].set_value(bias_hh)
            named_param_list[bias_hh_name].set_value(bias_hh)

142
            step_input_np = np.random.uniform(
143 144
                -0.1, 0.1, (self.batch_size, self.input_size)
            ).astype('float64')
145
            pre_hidden_np = np.random.uniform(
146 147
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
148
            pre_cell_np = np.random.uniform(
149 150
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
X
Xing Wu 已提交
151 152 153 154 155

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            pre_cell_var = fluid.dygraph.to_variable(pre_cell_np)
            api_out = cudnn_lstm(step_input_var, pre_hidden_var, pre_cell_var)
156 157 158
            named_api_out = named_cudnn_lstm(
                step_input_var, pre_hidden_var, pre_cell_var
            )
X
Xing Wu 已提交
159 160 161 162 163 164

            api_hidden_out = api_out[0]
            api_cell_out = api_out[1]
            named_api_hidden_out = named_api_out[0]
            named_api_cell_out = named_api_out[1]

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            np_hidden_out, np_cell_out = cudnn_step(
                step_input_np,
                pre_hidden_np,
                pre_cell_np,
                weight_ih,
                bias_ih,
                weight_hh,
                bias_hh,
            )
            np.testing.assert_allclose(
                api_hidden_out.numpy(), np_hidden_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                api_cell_out.numpy(), np_cell_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                named_api_hidden_out.numpy(), np_hidden_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                named_api_cell_out.numpy(), np_cell_out, rtol=1e-05, atol=0
            )
X
Xing Wu 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202


class TestNonCudnnLSTM(unittest.TestCase):
    def setUp(self):
        self.input_size = 100
        self.hidden_size = 200
        self.batch_size = 128

    def test_run(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with fluid.dygraph.guard(place):
            param_attr = fluid.ParamAttr(name="param_attr")
            bias_attr = fluid.ParamAttr(name="bias_attr")
203 204 205 206 207 208 209 210 211 212
            named_cudnn_lstm = LSTMCell(
                self.hidden_size,
                self.input_size,
                param_attr,
                bias_attr,
                use_cudnn_impl=False,
            )
            cudnn_lstm = LSTMCell(
                self.hidden_size, self.input_size, use_cudnn_impl=False
            )
X
Xing Wu 已提交
213 214 215 216 217 218 219 220 221 222

            param_list = cudnn_lstm.state_dict()
            named_param_list = named_cudnn_lstm.state_dict()

            # process weight and bias

            gate_w_name = "_weight"
            gate_b_name = "_bias"

            gate_w = param_list[gate_w_name].numpy()
223 224 225
            gate_w = np.random.uniform(-0.1, 0.1, size=gate_w.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
226 227 228 229
            param_list[gate_w_name].set_value(gate_w)
            named_param_list[gate_w_name].set_value(gate_w)

            gate_b = param_list[gate_b_name].numpy()
230 231 232
            gate_b = np.random.uniform(-0.1, 0.1, size=gate_b.shape).astype(
                'float64'
            )
X
Xing Wu 已提交
233 234 235
            param_list[gate_b_name].set_value(gate_b)
            named_param_list[gate_b_name].set_value(gate_b)

236
            step_input_np = np.random.uniform(
237 238
                -0.1, 0.1, (self.batch_size, self.input_size)
            ).astype('float64')
239
            pre_hidden_np = np.random.uniform(
240 241
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
242
            pre_cell_np = np.random.uniform(
243 244
                -0.1, 0.1, (self.batch_size, self.hidden_size)
            ).astype('float64')
X
Xing Wu 已提交
245 246 247 248 249

            step_input_var = fluid.dygraph.to_variable(step_input_np)
            pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
            pre_cell_var = fluid.dygraph.to_variable(pre_cell_np)
            api_out = cudnn_lstm(step_input_var, pre_hidden_var, pre_cell_var)
250 251 252
            named_api_out = named_cudnn_lstm(
                step_input_var, pre_hidden_var, pre_cell_var
            )
X
Xing Wu 已提交
253 254 255 256 257 258

            api_hidden_out = api_out[0]
            api_cell_out = api_out[1]
            named_api_hidden_out = named_api_out[0]
            named_api_cell_out = named_api_out[1]

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
            np_hidden_out, np_cell_out = non_cudnn_step(
                step_input_np, pre_hidden_np, pre_cell_np, gate_w, gate_b
            )

            np.testing.assert_allclose(
                api_hidden_out.numpy(), np_hidden_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                api_cell_out.numpy(), np_cell_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                named_api_hidden_out.numpy(), np_hidden_out, rtol=1e-05, atol=0
            )
            np.testing.assert_allclose(
                named_api_cell_out.numpy(), np_cell_out, rtol=1e-05, atol=0
            )
X
Xing Wu 已提交
275 276 277 278


if __name__ == '__main__':
    unittest.main()